Serial Programming Guide for POSIX Operating Systems

Serial Programming Guide
for
POSIX Operating Systems

5th Edition, 6th Revision
Copyright 1994-2005 by Michael R. Sweet

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of thelicenseisincluded in Appendix C, GNU Free Documentation License.

Table of Contents

Introduction

. License
. Organization

Chapter 1, Basics of Serial Communications

. What Are Serial Communications?
. What IsRS-232?

http://www.easysw.com/~mike/serial/serial.htmIO O 10 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

o Signa Definitions
. Asynchronous Communications
o What Are Full Duplex and Half Duplex?
o Flow Control
o What IsaBreak?
. Synchronous Communications
. Accessing Seria Ports
o Serial Port Files
o Opening a Serial Port
o Writing Data to the Port
o Reading Data from the Port
Closing a Serial Port

(]

Chapter 2, Configuring the Serial Port

. ThePOSIX Termina Interface
o Control Options
o Local Options
o Input Options
o Output Options
o Control Characters

Chapter 3, MODEM Communications

. What IsaMODEM?
. Communicating WithaMODEM
o Standard MODEM Commands
o Common MODEM Communication Problems

Chapter 4, Advanced Serial Programming

. Serial Port IOCTLs
o Getting the Control Signals
o Setting the Control Signals
o Getting the Number of Bytes Available
. Selecting Input from a Serial Port
o The SELECT System Call
o Using the SELECT System Call
o Using SELECT with the X Intrinsics Library

Appendix A, Pinouts
. RS-232 Pinouts
. RS-422 Pinouts

. RS-574 (IBM PC/AT) Pinouts
. SGI Pinouts

http://www.easysw.com/~mike/serial/serial.htmIO O 20 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems
Appendix B, ASCII Control Codes
. Control Codes
Appendix C, GNU Free Documentation License
. How to usethis License for your documents
Appendix D, Change History
. Edition 5, Revision 6
. Edition 5, Revision 5

. Edition 5, Revision 4
. Edition 5, Revision 3

Introduction

The Serial Programming Guide for POSIX Operating Systems will teach you how to successfully, efficiently, and portably
program the serial ports on your UNIX® workstation or PC. Each chapter provides programming examples that use the
POSIX (Portable Standard for UNIX) terminal control functions and should work with very few modifications under IRIX®,
HP-UX, SunOS®, Solaris®, Digital UNIX®, Linux®, and most other UNIX operating systems. The biggest difference
between operating systems that you will find is the filenames used for serial port device and lock files.

License

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of thelicenseisincluded in Appendix C, GNU Free Documentation License.

Organization
This guide is organized into the following chapters and appendices.

. Chapter 1, Basics of Serial Programming

. Chapter 2, Configuring the Serial Port

. Chapter 3, Talkking to MODEMs

. Chapter 4, Advanced Serial Programming

. Appendix A, RS-232 Pinouts

. Appendix B, ASCII Control Codes

. Appendix C, GNU Free Documentation License
. Appendix D, Change History

http://www.easysw.com/~mike/serial/serial.htmIO O 30 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Chapter 1, Basics of Serial Communications

This chapter introduces serial communications, RS-232 and other standards that are used on most computers as well as how to
access a seria port from a C program.

What Are Serial Communications?

Computers transfer information (data) one or more bits at atime. Seria refersto the transfer of data one bit at atime. Serial
communications include most network devices, keyboards, mice, MODEMSs, and terminals.

When doing serial communications each word (i.e. byte or character) of data you send or receive is sent one bit at atime. Each
bit is either on or off. The terms you'll hear sometimes are mark for the on state and space for the off state.

The speed of the serial data is most often expressed as bits-per-second ("bps") or baudot rate ("baud"). This just represents the
number of ones and zeroes that can be sent in one second. Back at the dawn of the computer age, 300 baud was considered
fast, but today computers can handle RS-232 speeds as high as 430,800 baud! When the baud rate exceeds 1,000, you'll
usually see the rate shown in kilo baud, or kbps (e.g. 9.6k, 19.2K, etc). For rates above 1,000,000 that rate is shown in
megabaud, or Mbps (e.g. 1.5Mbps).

When referring to serial devices or ports, they are either |abeled as Data Communications Equipment ("DCE") or Data
Terminal Equipment ("DTE"). The difference between these is simple - every signal pair, like transmit and receive, is
swapped. When connecting two DTE or two DCE interfaces together, a serial null-MODEM cable or adapter is used that
swaps the signal pairs.

What Is RS-2327?

RS-232 isa standard electrical interface for serial communications defined by the Electronic Industries Association ("EIA").
RS-232 actually comesin 3 different flavors (A, B, and C) with each one defining a different voltage range for the on and off
levels. The most commonly used variety is RS-232C, which defines amark (on) bit as a voltage between -3V and -12V and a
space (off) bit as a voltage between +3V and +12V. The RS-232C specification says these signals can go about 25 feet (8m)
before they become unusable. Y ou can usually send signals a bit farther than this as long as the baud is low enough.

Besides wires for incoming and outgoing data, there are others that provide timing, status, and handshaking:

Table 1 - RS-232 Pin Assignments

[Pin | Description |Pin | Description |Pin | Description |Pin | Description |Pin | Description
Signal
DSR - Data . Secondary .
1 |Earth Ground |6 Set Ready 11 |Unassigned |16 RXD 21 |Quality
Detect
TXD- GND - Logic Secondar Receiver
2 |Transmitted |7 dc 10 Yo 17 22 |Ring Detect
Ground DCD Clock
Data
RXD - DCD - Data
3 |Received 8 |Carrier 13 Secondary 18 |Unassigned (23 Data Rete
CTS Select
Data Detect

http://www.easysw.com/~mike/serial/serial.htmIO O 40 35 O O 2006-6-9 14:52:46

http://www.eia.org/
tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

RTS- .
Secondary Secondary Transmit
4 |RequestTo |9 |Reserved 14 XD 19 RTS 24 Clock
Send
. DTR - Data
5 (CTS-Clea 116 lResarved |15 |["@S™U g lTermind 25 |Unassigned
To Send Clock Read

Two standards for seria interfaces you may aso see are RS-422 and RS-574. RS-422 uses lower voltages and differential
signals to allow cable lengths up to about 1000ft (300m). RS-574 defines the 9-pin PC seria connector and voltages.

Signal Definitions

The RS-232 standard defines some 18 different signals for serial communications. Of these, only six are generally availablein
the UNIX environment.

GND - Logic Ground

Technically the logic ground is not asignal, but without it none of the other signals will operate. Basically, the logic ground
acts as areference voltage so that the electronics know which voltages are positive or negative.

TXD - Transmitted Data

The TXD signal carries data transmitted from your workstation to the computer or device on the other end (like a MODEM).
A mark voltageisinterpreted as a value of 1, while a space voltage isinterpreted as a value of O.

RXD - Received Data

The RXD signal carries data transmitted from the computer or device on the other end to your workstation. Like TXD, mark
and space voltages are interpreted as 1 and O, respectively.

DCD - Data Carrier Detect

The DCD signal is received from the computer or device on the other end of your serial cable. A space voltage on this signa
line indicates that the computer or deviceis currently connected or on line. DCD is not always used or available,

DTR - Data Terminal Ready

The DTR signal is generated by your workstation and tells the computer or device on the other end that you are ready (a space
voltage) or not-ready (a mark voltage). DTR is usually enabled automatically whenever you open the serial interface on the
workstation.

CTS - Clear To Send

The CTS signa isreceived from the other end of the serial cable. A space voltage indicates that it is alright to send more serial
data from your workstation.

CTSisusualy used to regulate the flow of serial data from your workstation to the other end.

RTS - Request To Send

http://www.easysw.com/~mike/serial/serial.htmIO O 50 35 O O 2006-6-9 14:52:46

tianxuefeng
下划线

tianxuefeng
插入号
space 电压表示计算机或者设备当前已连接或者在线。所以在无线通讯模块中，我们用其表示是否在上网中

tianxuefeng
附注
“tianxuefeng”设置的“Marked”

tianxuefeng
附注
“tianxuefeng”设置的“MigrationConfirmed”

tianxuefeng
附注
“tianxuefeng”设置的“Completed”

tianxuefeng
附注
“tianxuefeng”设置的“Marked”

Serial Programming Guide for POSIX Operating Systems

The RTS signd is set to the space voltage by your workstation to indicate that more datais ready to be sent.

Like CTS, RTS helps to regulate the flow of data between your workstation and the computer or device on the other end of the
serial cable. Most workstations leave this signal set to the space voltage al the time.

Asynchronous Communications

For the computer to understand the serial data coming into it, it needs some way to determine where one character ends and
the next begins. This guide deals exclusively with asynchronous serial data.

In asynchronous mode the serial dataline staysin the mark (1) state until a character istransmitted. A start bit preceeds each
character and is followed immediately by each bit in the character, an optional parity bit, and one or more stop bits. The start
bit is always a space (0) and tells the computer that new serial datais available. Data can be sent or received at any time, thus
the name asynchronous,

Figure 1 - Asynchronous Data Transmission

SPACE +12V

MARK -12V

The optional parity bit isasimple sum of the data bits indicating whether or not the data contains an even or odd number of 1
bits. With even parity, the parity bit is O if there is an even number of 1'sin the character. With odd parity, the parity bit isO if
thereis an odd number of 1'sin the data. Y ou may also hear the terms space parity, mark parity, and no parity. Space parity
means that the parity bit is always 0, while mark parity means the bit is always 1. No parity means that no parity bit is present
or transmitted,

The remaining bits are called stop bits. There can be 1, 1.5, or 2 stop bits between characters and they always have a value of
1. Stop bits traditionally were used to give the computer time to process the previous character, but now only serve to
synchronize the receiving computer to the incoming characters.

Asynchronous data formats are usually expressed as "8N1", "7E1", and so forth. These stand for "8 data bits, no parity, 1 stop
bit" and "7 data bits, even parity, 1 stop bit" respectively.

What Are Full Duplex and Half Duplex?

Full duplex means that the computer can send and receive data simultaneously - there are two separate data channels (one
coming in, one going out).

Half duplex means that the computer cannot send or receive data at the same time. Usually this meansthereisonly asingle
data channel to talk over. This does not mean that any of the RS-232 signals are not used. Rather, it usually means that the
communications link uses some standard other than RS-232 that does not support full duplex operation.

Flow Control
It is often necessary to regulate the flow of data when transferring data between two serial interfaces. This can be due to

http://www.easysw.com/~mike/serial/serial.htmIO O 60 35 O O 2006-6-9 14:52:46

tianxuefeng
插入号
在异步模式，串行数据线保持在mark(1，直到一个字符被传输。每个字符传输序列为：一个开始位，字符，一个可选奇偶位，一个或多个停止位。开始位总是space(0),告诉计算机新串行数据可用。数据可以在任意时刻收发，“异步”由此而来。

tianxuefeng
附注
“tianxuefeng”设置的“Accepted”

tianxuefeng
附注
“tianxuefeng”设置的“Completed”

tianxuefeng
附注
“tianxuefeng”设置的“MigrationConfirmed”

tianxuefeng
附注
“tianxuefeng”设置的“Marked”

tianxuefeng
插入号
可选的奇偶位是数据位的简单和，指示数据是否包含一个偶数或奇数个 为1的bit。偶校验的话，如果字符中有偶数个1，那么此bit为0；对于奇校验，如果有奇数个为1的bit，那么校验位为0。
剩下的字符称为停止位，在字符间可以有1，1.5，2个停止位。停止位通常用于给计算机书简去处理先前的字符，但是现在仅仅用于同步接收计算机和输入字符。
异步数据模式通常表示为"8N1","7E1"

tianxuefeng
附注
“tianxuefeng”设置的“Marked”

Serial Programming Guide for POSIX Operating Systems

limitations in an intermediate serial communications link, one of the serial interfaces, or some storage media. Two methods
are commonly used for asynchronous data.

The first method is often called "software" flow control and uses special charactersto start (XON or DC1, 021 octal) or stop
(XOFF or DC3, 023 octal) the flow of data. These characters are defined in the American Standard Code for Information

Interchange ("ASCII"). While these codes are useful when transferring textual information, they cannot be used when
transferring other types of information without special programming. E]

The second method is called "hardware” flow control and uses the RS-232 CTS and RTS signals instead of special characters.
The receiver sets CTS to the space voltage when it is ready to receive more data and to the mark voltage when it is not ready.
Likewise, the sender sets RT S to the space voltage when it is ready to send more data. Because hardware flow control uses a
separate set of signals, it is much faster than software flow control which needs to send or receive multiple bits of information
to do the same thing. CTS/RTS flow control is not supported by all hardware or operating systems.

What Is a Break?

Normally areceive or transmit data signal stays at the mark voltage until anew character istransferred. If the signal is
dropped to the space voltage for along period of time, usually 1/4 to 1/2 second, then a break condition is said to exist.

A break is sometimes used to reset a communications line or change the operating mode of communications hardware like a
MODEM. Chapter 3, Talking to MODEMSs covers these applications in more depth.

Synchronous Communications

Unlike asynchronous data, synchronous data appears as a constant stream of bits. To read the data on the line, the computer
must provide or receive acommon bit clock so that both the sender and receiver are synchronized.

Even with this synchronization, the computer must mark the beginning of the data somehow. The most common way of doing
thisisto use a data packet protocol like Serial Data Link Control ("SDLC") or High-Speed Data Link Control ("HDLC").

Each protocol defines certain bit sequences to represent the beginning and end of a data packet. Each also defines a bit
sequence that is used when there is no data. These bit sequences allow the computer to see the beginning of a data packet.

Because synchronous protocols do not use per-character synchronization bits they typically provide at least a 25%
improvement in performance over asynchronous communications and are suitable for remote networking and configurations
with more than two serial interfaces.

Despite the speed advantages of synchronous communications, most RS-232 hardware does not support it due to the extra
hardware and software required.

Accessing Serial Ports

Like all devices, UNIX provides access to serial ports via devicefiles. To access a serial port you simply open the
corresponding devicefile.

Serial Port Files

Each serial port on a UNIX system has one or more device files (filesin the /dev directory) associated with it:

http://www.easysw.com/~mike/serial/serial.htmIO O 70 35 O O 2006-6-9 14:52:46

tianxuefeng
附注
》》》流控
当在两个穿行口间传输数据时，经常有必要去管理数据的流动。

第一种方法被称为"软“流控，使用特殊的字符去开始(XON或DC1,021 octal)或者停止(XOFF或DC3,023 octal)数据流。这些字符被定义在ASCII中。这些编码在传输文本信息时有用，但如无特殊编程，他们无法被用于传输其他类型的数据。

第二种方法被称为”硬“流控，使用RS-232 CTS/RTS信号去替代指定字符。当接收者准备好去接收数据时，设置CTS为space；否则设为mark.类似的，当发送者准备好发送时，它塞设置RTS为space
》》》BREAK
正常情形，接受或传输数据信号保持在mark电压，知道新字符被传输。如果信号被下降到space，达到一定长（通常为1/4,1/2秒），然后一个break条件被告知存在。
break某些时候被用于重置通讯线或者改变通讯硬件的操作模式

Serial Programming Guide for POSIX Operating Systems

Table 2 - Serial Port Device Files

| System | Portl | Port2
IRIX® /devittyf1 |/devittyf2
IHP-UX /dev/tty1p0 |/devitty2p0
|Solaris®/SUnOS® |/devittya |/devittyb
Linux® /devittySO |/dev/ttyS1
Digital UNIX® |/dev/tty0l |/dev/tty02

Opening a Serial Port

Since aseria port isafile, the open(2) function is used to access it. The one hitch with UNIX isthat device files are usually
not accessable by normal users. Workarounds include changing the access permissions to the file(s) in question, running your
program as the super-user (root), or making your program set-userid so that it runs as the owner of the device file (not
recommended for obvious security reasons...)

For now we'll assume that the file is accessable by all users. The code to open serial port 1 on a PC running Linux is show in
Listing 1.

Listing 1 - Opening a serial port.

#i ncl ude <stdio. h> /* Standard input/output definitions */
#include <string.h> /* String function definitions */

#i ncl ude <unistd.h> /* UN X standard function definitions */
#i ncl ude <fcntl. h> /* File control definitions */

#i ncl ude <errno. h> [* Error nunber definitions */

#include <termos.h> /* POSI X termnal control definitions */

/*

* "open_port()" - Open serial port 1.

*

* Returns the file descriptor on success or -1 on error.
*/

I nt

open_port (voi d)

{

int fd; /* File descriptor for the port */

fd = open("/dev/ttyS0", O RDWR | O NOCTTY | O _NDELAY);

if (fd == -1)

{

/~k
* Coul d not open the port.
*/

perror ("open_port: Unable to open /dev/ttySO - ");
}

http://www.easysw.com/~mike/serial/serial.htmIO O 80 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

el se
fentl (fd, F_SETFL, 0);

return (fd);
}

Other systems would require the corresponding device file name, but otherwise the code is the same.
Open Options
Y ou'll notice that when we opened the device file we used two other flags along with the read+write mode:
fd = open("/dev/ttySO0", O RDWR | O NOCTTY | O_NDELAY);
The O_NOCTTY flag tells UNIX that this program doesn't want to be the "controlling terminal” for that port. If you don't
specify this then any input (such as keyboard abort signals and so forth) will affect your process. Programs like getty(1M/8)
use this feature when starting the login process, but normally a user program does not want this behavior.
The O_NDELAY flag tells UNIX that this program doesn't care what state the DCD signal lineisin - whether the other end of

the port is up and running. If you do not specify this flag, your process will be put to sleep until the DCD signal lineisthe
space voltage.

Writing Data to the Port
Writing data to the port is easy - just use the write(2) system call to send datait:
n =wite(fd, "ATZ\r", 4);
if (n <0
fputs("wite() of 4 bytes failed!'\n", stderr);

The write function returns the number of bytes sent or -1 if an error occurred. Usually the only error you'll runintois EIO
when a MODEM or data link drops the Data Carrier Detect (DCD) line. This condition will persist until you close the port.

Reading Data from the Port

Reading data from a port is alittle trickier. When you operate the port in raw data mode, each read(2) system call will return
the number of characters that are actually available in the serial input buffers. If no characters are available, the call will block
(wait) until characters comein, an interval timer expires, or an error occurs. The read function can be made to return
immediately by doing the following:

fentl (fd, F_SETFL, FNDELAY);

The FNDELAY option causes the read function to return O if no characters are available on the port. To restore normal
(blocking) behavior, call fentl() without the FNDELAY option:

fentl (fd, F_SETFL, 0):

Thisis aso used after opening a serial port withthe O_NDELAY option.

http://www.easysw.com/~mike/serial/serial.htmIO O 90 35 O O 2006-6-9 14:52:46

tianxuefeng
附注
O_NOCTTY 打开的终端文件不要成为本进程的控制终端
O_NOBLOCK ＝ O_NDELAY非阻塞模式

tianxuefeng
高亮

tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

Closing a Serial Port
To close the seria port, just use the close system call:
cl ose(fd);

Closing a seria port will also usualy set the DTR signal low which causes most MODEMSs to hang up.

Chapter 2, Configuring the Serial Port

This chapter discusses how to configure a serial port from C using the POSIX termios interface.

The POSIX Terminal Interface

Most systems support the POSIX terminal (serial) interface for changing parameters such as baud rate, character size, and so
on. Thefirst thing you need to do is include the file <termios.h>; this defines the terminal control structure aswell asthe
POSIX control functions.

The two most important POSI X functions are tcgetattr(3) and tcsetattr(3). These get and set terminal attributes, respectively;
you provide a pointer to atermios structure that contains al of the serial options available:

Table 3 - Termios Structure Members

| Member | Description
lc_cflag Control options

c_Iflag |Line options

c_iflag [Input options

ic_oflag Output options

lc_cc Control characters
lc_ispeed lInput baud (new interface)
lc_ospeed Output baud (new interface)

Control Options

The c_cflag member controls the baud rate, number of data bits, parity, stop bits, and hardware flow control. There are
constants for all of the supported configurations.
Table 4 - Constants for the ¢_cflag Member

| Constant | Description
ICBAUD |Bit mask for baud rate

BO 10 baud (drop DTR)

B50 150 baud

B75 175 baud

http://www.easysw.com/~mike/serial/serial.ntmlO O 100 35 O O 2006-6-9 14:52:46

tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

B110 1110 baud

B134 1134.5 baud

B150 1150 baud

B200 1200 baud

IB300 1300 baud

B600 1600 baud

1B1200 11200 baud

1B1800 11800 baud

1B2400 12400 baud

B4800 14800 baud

IB960O 19600 baud

B19200 119200 baud

B38400 138400 baud

IB57600 157,600 baud

B76800 176,800 baud

B115200 115,200 baud

]EXTA]External rate clock

[EXTB]External rate clock

ICSIZE |Bit mask for data bits

CS5 /5 data bits

CS6 6 data bits

Cs7 |7 data bits

ICs8 18 data bits

IcsTOPB 12 stop bits (1 otherwise)
|CREAD]Enable receiver

IPARENB |Enable parity bit

IPARODD Use odd parity instead of even
IHUPCL IHangup (drop DTR) on last close
ICLOCAL |Local line - do not change "owner" of port
ILOBLK |Block job control output
CNEW_RTSCTS |Enable hardware flow control (not
ICRTSCTS supported on all platforms)

The c_cflag member contains two options that should always be enabled, CLOCAL and CREAD. These will ensure that your
program does not become the ‘owner' of the port subject to sporatic job control and hangup signals, and also that the serial
interface driver will read incoming data bytes.

The baud rate constants (CBAUD, B9600, etc.) are used for older interfaces that lack the c_ispeed and c_ospeed members. See
the next section for information on the POSI X functions used to set the baud rate.

http://www.easysw.com/~mike/serial/serial.ntmlO O 110 35 O O 2006-6-9 14:52:46

tianxuefeng
高亮

tianxuefeng
高亮

tianxuefeng
高亮

tianxuefeng
高亮

tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

Never initialize the c_cflag (or any other flag) member directly; you should always use the bitwise AND, OR, and NOT
operatorsto set or clear bitsin the members. Different operating system versions (and even patches) can and do use the bits
differently, so using the bitwise operators will prevent you from clobbering a bit flag that is needed in a newer serial driver.

Setting the Baud Rate

The baud rate is stored in different places depending on the operating system. Older interfaces store the baud rate in the
c_cflag member using one of the baud rate constants in table 4, while newer implementations provide the c_ispeed and
c_ospeed members that contain the actual baud rate value.

The cfsetospeed(3) and cfsetispeed(3) functions are provided to set the baud rate in the termios structure regardless of the
underlying operating system interface. Typically you'd use the code in Listing 2 to set the baud rate.

Listing 2 - Setting the baud rate.

struct term os options;

/*
* Get the current options for the port...
*/

tcgetattr(fd, &options);

/*

* Set the baud rates to 19200. ..
*/

cfseti speed(&options, B19200);
cf set ospeed(&opti ons, B19200);

/*

* Enabl e the receiver and set |ocal node...
*/

options.c_cflag | = (CLOCAL | CREAD);

/*

* Set the new options for the port...

*/

tcsetattr(fd, TCSANOW &options);

The tcgetattr(3) function fills the termios structure you provide with the current seria port configuration. After we set the
baud rates and enable local mode and serial data receipt, we select the new configuration using tcsetattr(3). The TCSANOW
constant specifies that all changes should occur immediately without waiting for output data to finish sending or input data to
finish receiving. There are other constants to wait for input and output to finish or to flush the input and output buffers.

Most systems do not support different input and output speeds, so be sure to set both to the same value for maximum
portability.

Table 5 - Constants for tcsetattr

http://www.easysw.com/~mike/serial/serial.ntmlO O 120 35 O O 2006-6-9 14:52:46

tianxuefeng
高亮

tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

| Constant | Description

Make changes now without waiting for data

TCSANOW to complete

ITCSADRAIN |Wait until everything has been transmitted

Flush input and output buffers and make the

TCSAFLUSH
change

Setting the Character Size

Unlike the baud rate, there is no convienience function to set the character size. Instead you must do alittle bitmasking to set
things up. The character size is specified in bits:

/*
/*

Mask the character size bits */
Sel ect 8 data bits */

options.c_cflag & ~CSI ZE;
options.c_cflag | = CS8;

Setting Parity Checking

Like the character size you must manually set the parity enable and parity type bits. UNIX serial drivers support even, odd,

and no parity bit generation. Space parity can be smulated with clever coding.

. No parity (8N1):
options.c_cflag & ~PARENB
options.c_cflag & ~CSTOPB
options.c_cflag & ~CSl ZE;
options.c_cflag | = CS8;

. Even parity (7E1):
options.c_cflag | = PARENB
options.c_cflag & ~PARCDD
options.c_cflag & ~CSTOPB
options.c_cflag & ~CSl ZE;
options.c_cflag | = CS7;

. Odd parity (701):
options.c_cflag | = PARENB
options.c_cflag | = PARODD
options.c_cflag & ~CSTOPB
options.c_cflag & ~CSl ZE;
options.c_cflag | = CS7;

Space parity is setup the same as no parity (7S1):

options.c_cflag & ~PARENB

http://www.easysw.com/~mike/serial/serial.ntmlO O 130 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems
options.c_cflag & ~CSTOPB
options.c_cflag & ~CSl ZE;
options.c_cflag | = CS8;
Setting Hardware Flow Control
Some versions of UNIX support hardware flow control using the CTS (Clear To Send) and RTS (Request To Send) signa
lines. If the CNEW_RTSCTSor CRTSCTS constants are defined on your system then hardware flow control is probably
supported. Do the following to enable hardware flow control:
options.c_cflag | = CNEW RTSCTS; /* Also called CRTSCTS */
Similarly, to disable hardware flow control:
options.c_cflag & ~CNEW RTSCTS;

Local Options

The local modes member ¢ _|flag controls how input characters are managed by the serial driver. In general you will configure
the c_lflag member for canonical or raw input.

Table 6 - Constants for the c_Iflag Member

| Constant | Description

Enable SIGINTR, SIGSUSP, SIGDSUSP, and
SIGQUIT signals

ICANON |Enable canonical input (else raw)
]XCASE]M ap uppercase \lowercase (obsolete)
[ECHO |[Enable echoing of input characters
[ECHOE |Echo erase character as BS-SP-BS
[ECHOK |Echo NL after kill character
[ECHONL |Echo NL

’ISIG

Disable flushing of input buffers after interrupt
or quit characters

]I EXTEN]Enable extended functions

Echo control characters as “char and delete as
)

IECHOPRT |Echo erased character as character erased
[ECHOKE [BS-SP-BSentire line on linekill

IFLUSHO |Output being flushed

IPENDIN |Retype pending input at next read or input char
ITOSTOP |Send SIGTTOU for background output

NOFLSH

ECHOCTL

Choosing Canonical Input

http://www.easysw.com/~mike/serial/serial.ntmlO O 140 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Canonical input is line-oriented. Input characters are put into a buffer which can be edited interactively by the user until aCR
(carriage return) or LF (line feed) character is received. @

When selecting this mode you normally select the ICANON, ECHO, and ECHOE options:
options.c_Iflag |= (I CANON | ECHO | ECHCE);
Choosing Raw Input

Raw input is unprocessed. Input characters are passed through exactly as they are received, when they are received. Generally
you'll deselect the ICANON, ECHO, ECHOE, and | S G options when using raw input:

options.c_Iflag & ~(ICANON | ECHO | ECHCE | 1SIQ;
A Note About Input Echo

Never enable input echo (ECHO, ECHOE) when sending commands to aMODEM or other computer that is echoing
characters, as you will generate a feedback loop between the two seria interfaces!

Input Options

The input modes member c_iflag controls any input processing that is done to characters received on the port. Like the c_cflag
field, the final value stored in c_iflag is the bitwise OR of the desired options.

Table 7 - Constants for the c_iflag Member

| Constant | Description

INPCK |Enable parity check

IGNPAR Ignore parity errors

IPARMRK [Mark parity errors

ISTRIP [Strip parity bits

IXON |[Enable software flow control (outgoing)

IXOFF |Enable software flow control (incoming)

IXANY |Allow any character to start flow again
IGNBRK Ignore break condition

Send a SIGINT when a break conditionis
detected

INLCR [MapNL toCR

IGNCR |Ignore CR

ICRNL |MapCRtoNL

IUCLC [Map uppercase to lowercase
IMAXBEL |Echo BEL on input linetoo long

’BRKINT

Setting Input Parity Options

http://www.easysw.com/~mike/serial/serial.ntmlO O 150 35 O O 2006-6-9 14:52:46

tianxuefeng
附注
Canonical Input
规范输入是面向行的。输入的字符将被放在一个缓冲中，可以北交互式编辑，直到收到CR/LF

Serial Programming Guide for POSIX Operating Systems

Y ou should enable input parity checking when you have enabled parity in the c_cflag member (PARENB). The revelant
constants for input parity checking are INPCK, IGNPAR, PARMRK , and ISTRIP. Generally you will select INPCK and
ISTRIP to enable checking and stripping of the parity bit:

options.c_iflag |= (INPCK | | STRIP);

IGNPAR is a somewhat dangerous option that tells the serial driver to ignore parity errors and pass the incoming data through
asif no errors had occurred. This can be useful for testing the quality of acommunications link, but in general is not used for
practical reasons.

PARMRK causes parity errors to be 'marked' in the input stream using specia characters. If IGNPARis enabled, a NUL
character (000 octal) is sent to your program before every character with a parity error. Otherwise, aDEL (177 octal) and
NUL character is sent along with the bad character.

Setting Software Flow Control
Software flow control is enabled using the IXON, I XOFF, and I XANY constants:
options.c_iflag | = (I XON | | XCOFF | | XANY);
To disable software flow control simply mask those bits:
options.c_iflag & ~(1XON | | XOFF | | XANY);
The XON (start data) and X OFF (stop data) characters are defined in the c_cc array described below.
Output Options
The c_oflag member contains output filtering options. Like the input modes, you can select processed or raw data output.

Table 8 - Constants for the c_oflag Member

| Constant | Description

|OPOST |Postprocess output (not set = raw output)
IOLCUC |Map lowercase to uppercase

IONLCR {Map NL to CR-NL

JOCRNL {Map CRto NL

INOCR [No CR output a column 0

IONLRET |NL performs CR function

OFILL |Usefill characters for delay

IOFDEL |Fill character is DEL

INLDLY [Mask for delay time needed between lines
INLO INo delay for NLs

Delay further output after newline for 100
NL1 -
milliseconds

http://www.easysw.com/~mike/serial/serial.ntmlO O 160 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Mask for delay time needed to return carriage to
left column

ICRO INo delay for CRs

CRDLY

Delay after CRs depending on current column

CR1 L

position
ICR2 Delay 100 milliseconds after sending CRs
ICR3 Delay 150 milliseconds after sending CRs

ITABDLY |Mask for delay time needed after TABs
TABO |Nodelay for TABs

Delay after TABs depending on current column
position

TAB2 | Delay 100 milliseconds after sending TABs
TAB3 |Expand TAB characters to spaces

IBSDLY |Mask for delay time needed after BSs

’TABl

IBSO INo delay for BSs

BS1 Delay 50 milliseconds after sending BSs
VTDLY [Mask for delay time needed after VTs
VTO INo delay for VTs

VT1 Delay 2 seconds after sending V' Ts
IFFDLY |Mask for delay time needed after FFs
FFO INo delay for FFs

FF1 Delay 2 seconds after sending FFs

Choosing Processed Output
Processed output is selected by setting the OPOST option in the c_oflag member:
options.c_oflag | = OPOST;
Of al the different options, you will only probably use the ONLCR option which maps newlinesinto CR-LF pairs. The rest of
the output options are primarily historic and date back to the time when line printers and terminals could not keep up with the
serial data stream!
Choosing Raw Output
Raw output is selected by resetting the OPOST option in the c_oflag member:
options.c_oflag & ~OPCST;
When the OPOST option is disabled, all other option bitsin c_oflag are ignored.
Control Characters

The c_cc character array contains control character definitions as well as timeout parameters. Constants are defined for every

http://www.easysw.com/~mike/serial/serial.ntmlO O 170 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

element of thisarray.

Table 9 - Control Charactersin the c_cc Member

Constant | Description | Key
VINTR |Interrupt ICTRL-C
VQUIT |Quit ICTRL-Z
VERASE |Erase Backspace (BS)
VKILL [Kill-line ICTRL-U
IVEOF |End-of-file ICTRL-D

\VEOL |End-of-line |Carriage return (CR)
IVEOL2 |Second end-of-line Line feed (LF)
VMIN [Minimum number of charactersto read |-

VSTART |Start flow ICTRL-Q (XON)
VSTOP |Stop flow ICTRL-S (XOFF)
IVTIME |Time to wait for data (tenths of seconds) |-

Setting Software Flow Control Characters

The VSTART and VSTOP elements of the c_cc array contain the characters used for software flow control. Normally they
should be set to DC1 (021 octal) and DC3 (023 octal) which represent the ASCI standard XON and X OFF characters.

Setting Read Timeouts

UNIX serial interface drivers provide the ability to specify character and packet timeouts. Two elements of the c_cc array are
used for timeouts: VMIN and VTIME. Timeouts areignored in canonical input mode or when the NDELAY option is set
on thefile via open or fentl.

VMIN specifies the minimum number of charactersto read. If it is set to O, then the VTIME value specifies the time to wait for
every character read. Note that this does not mean that aread call for N byteswill wait for N charactersto come in. Rather,
the timeout will apply to the first character and the read call will return the number of charactersimmediately available (up to
the number you request).

If VMIN is non-zero, VTIME specifies the time to wait for the first character read. If a character is read within the time given,
any read will block (wait) until all VMIN characters are read. That is, once the first character is read, the serial interface driver
expectsto receive an entire packet of characters (VMIN bytestotal). If no character is read within the time allowed, then the
call toread returns 0. This method alows you to tell the serial driver you need exactly N bytes and any read call will return O
or N bytes. However, the timeout only applies to the first character read, so if for some reason the driver misses one character
inside the N byte packet then the read call could block forever waiting for additional input characters.

VTIME specifies the amount of time to wait for incoming characters in tenths of seconds. If VTIME is set to O (the default),
reads will block (wait) indefinitely unless the NDELAY option is set on the port with open or fentl.

Chapter 3, MODEM Communications

http://www.easysw.com/~mike/serial/serial.ntmlO O 180 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

This chapter covers the basics of dialup telephone Modulator/Demodulator (MODEM) communications. Examples are
provided for MODEMSs that use the defacto standard "AT" command set.

What Is a MODEM?

MODEMSs are devices that modul ate serial datainto frequencies that can be transferred over an analog data link such as a
telephone line or cable TV connection. A standard telephone MODEM converts seria data into tones that can be passed over
the phone lines; because of the speed and complexity of the conversion these tones sound more like loud screeching if you
listen to them.

Telephone MODEMSs are available today that can transfer data across a telephone line at nearly 53,000 bits per second, or
53kbps. In addition, most MODEM s use data compression technology that can increase the bit rate to well over 100kbps on
some types of data.

Communicating With a MODEM
Thefirst step in communicating with aMODEM is to open and configure the port for raw input as shown in Listing 3.
Listing 3 - Configuring the port for raw input.

i nt fd;
struct term os options;

/* open the port */
fd = open("/dev/ttyS0", O RDWR | O NOCTTY | O_NDELAY);
fentl (fd, F_SETFL, 0);

/* get the current options */
tcgetattr(fd, &options);

/* set raw input, 1 second tineout */

options.c_cflag | = (CLOCAL | CREAD);
options.c_Iflag & ~(ICANON | ECHO | ECHOE | ISIQ;
options.c_ofl ag &= ~OPCST,;

options.c_cc[VM N = 0;

options.c_cc[VTI ME] = 10;

/* set the options */
tcsetattr(fd, TCSANOW &options);

Next you need to establish communications with the MODEM. The best way to do thisis by sending the"AT" command to
the MODEM. This also allows smart MODEMSs to detect the baud you are using. When the MODEM is connected correctly
and powered on it will respond with the response "OK".
Listing 4 - Initializing the MODEM.

i nt /* O- 0 = MODEM ok, -1 = MODEM bad */

i nit_noden(int fd) /[* 1 - Serial port file */
{

http://www.easysw.com/~mike/serial/serial.ntmlO O 190 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

char buffer[255]; [/* Input buffer */

char *bufptr; /* Current char in buffer */
int nbytes; /* Nunmber of bytes read */
int tries; /* Nunmber of tries so far */

for (tries = 0; tries < 3; tries ++4)
{
/* send an AT command followed by a CR */
if (wite(fd, "AT\r", 3) < 3)
conti nue;

/* read characters into our string buffer until we get a CRor NL */
buf ptr = buffer;
while ((nbytes = read(fd, bufptr, buffer + sizeof(buffer) - bufptr - 1)) > 0)

{
buf ptr += nbytes;
if (bufptr[-1] == "\n" || bufptr[-1] == "\r")
br eak;
}

/* nul termnate the string and see if we got an OK response */
*puf ptr = "\0'";

if (strncnp(buffer, "OK*, 2) == 0)
return (0);

}

return (-1);

}

Standard MODEM Commands

Most MODEM s support the "AT" command set, so called because each command starts with the "AT" characters. Each
command is sent with the "AT" characters starting in the first column followed by the specific command and a carriage return

(CR, 015 octal). After processing the command the MODEM will reply with one of several textual messages depending on the
command.

ATD - Dial A Number

The ATD command dials the specified number. In addition to numbers and dashes you can specify tone ("T") or pulse ("P")
dialing, pause for one second (","), and wait for a dialtone ("W"):

ATDT 555-1212
ATDT 18008008008WL234, 1, 1234
ATD T555-1212WP1234

The MODEM will reply with one of the following messages:

NO DI ALTONE
BUSY
NO CARRI ER

http://www.easysw.com/~mike/serial/serial.ntmlO O 200 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

CONNECT
CONNECT baud

ATH - Hang Up

The ATH command causes the MODEM to hang up. Since the MODEM must bein "command" mode you probably won't use
it during anormal phone call.

Most MODEMs will aso hang up if DTR is dropped; you can do this by setting the baud to O for at least 1 second. Dropping
DTR aso returns the MODEM to command mode.

After a successful hang up the MODEM will reply with "NO CARRIER". If the MODEM is still connected the "CONNECT"
or "CONNECT baud" message will be sent.

ATZ - Reset MODEM

The ATZ command resets the MODEM. The MODEM will reply with the string "OK".
Common MODEM Communication Problems

First and foremost, don't forget to disable input echoing. Input echoing will cause a feedback 1oop between the MODEM and
computer.

Second, when sending MODEM commands you must terminate them with a carriage return (CR) and not a newline (NL). The
C character constant for CRis"\r".

Finally, when dealing with a MODEM make sure you use a baud that the MODEM supports. While many MODEMs do auto-
baud detection, some have limits (19.2kbps is common on older MODEMSs) that you must observe.

Chapter 4, Advanced Serial Programming
This chapter covers advanced serial programming techniques using the ioctl(2) and select(2) system calls.

Serial Port IOCTLs

In Chapter 2, Configuring the Serial Port we used the tcgetattr and tcsetattr functions to configure the serial port. Under
UNIX these functions use the ioctl(2) system call to do their magic.

Theioctl system call takes three arguments:
int ioctl(int fd, int request, ...);

The fd argument specifies the serial port file descriptor. The request argument is a constant defined in the <termios.h> header
fileand istypically one of the constantslisted in Table 10.

Table 10 - IOCTL Requests for Serial Ports

http://www.easysw.com/~mike/serial/serial.ntmlO O 210 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

| Request | Description

] POSIX Function

ITCGETS |Getsthe current serial port settings.

tegetattr

ITCSETS |Setsthe serial port settingsimmediately.

tesetattr(fd, TCSANOW, & options)

TesETsE | Sotstheserial port settings after flushing the | oy /¢4 TCSAFLUSH, & options)
input and output buffers.

TesETow | Stheserial port settings after dllowingthe | o\ ¢4 TCSADRAIN, &options)
input and output buffers to drainfempty.

ITCSBRK |Sends a break for the given time.

’tcsendbreak, tedrain

|TCXONC]Controls software flow control. ’tcflow
ITCFLSH |Flushesthe input and/or output queue. itcflush
]TI OCMGET]Returns the state of the"MODEM" bits.]None
]Tl OCMSET]Sets the state of the"MODEM" bits.]None
|FI ONREAD |§ljaftfuerrnsthe number of bytesin the input None

Getting the Control Signals

The TIOCMGET ioctl getsthe current "MODEM" status bits, which consist of all of the RS-232 signal lines except RXD and

TXD, listedin Table 11.

To get the status bits, call ioctl with a pointer to an integer to hold the bits, as shown in Listing 5 .

Listing 5 - Getting the MODEM status bits.

#i ncl ude <uni std. h>
#i ncl ude <termnm os. h>

int fd;
i nt status;

ioctl (fd, TIOCMGET, &status);

Table 11 - Control Signal Constants

| Constant | Description

TIOCM_LE |DSR (data set ready/line enable)

ITIOCM_DTR |DTR (data terminal ready)

ITIOCM_RTS |RTS (request to send)

ITIOCM_ST |Secondary TXD (transmit)

ITIOCM_SR |Secondary RXD (receive)

ITIOCM_CTS |CTS (clear to send)

ITIOCM_CAR |DCD (data carrier detect)

'TIOCM_CD |Synonym for TIOCM_CAR

ITIOCM_RNG |RNG (ring)

http://www.easysw.com/~mike/serial/serial.ntmlO O 220 35 O O 2006-6-9 14:52:46

tianxuefeng
高亮

tianxuefeng
高亮

tianxuefeng
高亮

tianxuefeng
高亮

Serial Programming Guide for POSIX Operating Systems

ITIOCM_RI |Synonym for TIOCM_RNG
TIOCM_DSR |DSR (data set ready)

Setting the Control Signals
The TIOCMSET ioctl setsthe"MODEM" status bits defined above. To drop the DTR signal you can use the code in Listing 6.

Listing 6 - Dropping DTR with the TIOCMSET ioctl.

#i ncl ude <uni std. h>
#i ncl ude <terni os. h>

int fd;
i nt status;

ioctl (fd, TIOCMGEET, &status);
status &= ~TI OCM DTR;

ioctl (fd, TIOCVSET, &status);

The bits that can be set depend on the operating system, driver, and modes in use. Consult your operating system
documentation for more information.

Getting the Number of Bytes Available

The FIONREAD ioctl gets the number of bytesin the seria port input buffer. Aswith TIOCMGET you passin a pointer to an
integer to hold the number of bytes, asshownin Listing 7.

Listing 7 - Getting the number of bytesin the input buffer.

#i ncl ude <uni std. h>
#i ncl ude <termn os. h>

int fd;
i nt bytes;

ioctl (fd, FIONREAD, &bytes);

This can be useful when polling a serial port for data, as your program can determine the number of bytesin the input buffer
before attempting aread.

Selecting Input from a Serial Port

While simple applications can poll or wait on data coming from the seria port, most applications are not ssmple and need to
handle input from multiple sources.

UNIX provides this capability through the select(2) system call. This system call allows your program to check for input,
output, or error conditions on one or more file descriptors. The file descriptors can point to seria ports, regular files, other

http://www.easysw.com/~mike/serial/serial.ntmlO O 230 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

devices, pipes, or sockets. Y ou can poll to check for pending input, wait for input indefinitely, or timeout after a specific
amount of time, making the select system call extremely flexible.

Most GUI Toolkits provide an interface to select; we will discuss the X Intrinsics ("Xt") library later in this chapter.
The SELECT System Call
The select system call accepts 5 arguments:

int select(int max_fd, fd_set *input, fd set *output, fd_set *error,
struct tineval *timeout);

The max_fd argument specifies the highest numbered file descriptor in the input, output, and error sets. The input, output, and
error arguments specify sets of file descriptors for pending input, output, or error conditions; specify NULL to disable
monitoring for the corresponding condition. These sets are initialized using three macros:

FD_ZERO(& d_set) ;
FD SET(fd, & d_set);
FD CLR(fd, & d_set);

The FD_ZERO macro clears the set entirely. The FD_SET and FD_CLR macros add and remove a file descriptor from the set,
respectively.

The timeout argument specifies atimeout value which consists of seconds (timeout.tv_sec) and microseconds (timeout.
tv_usec). To poll one or more file descriptors, set the seconds and microseconds to zero. To wait indefinitely specify NULL
for the timeout pointer.

The select system call returns the number of file descriptors that have a pending condition, or -1 if there was an error.

Using the SELECT System Call

Suppose we are reading data from a serial port and a socket. We want to check for input from either file descriptor, but want
to notify the user if no datais seen within 10 seconds. To do thiswe'll need to use the select system call, as shown in Listing 8.

Listing 8 - Using SELECT to process input from more than one source.

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/tinme. h>
#i ncl ude <sys/sel ect. h>

i nt n;

i nt socket ;
i nt fd,;

i nt max_fd;
fd_set i nput ;

struct tineval tineout;

/* Initialize the input set */
FD ZERQ(& nput) ;

http://www.easysw.com/~mike/serial/serial.ntmlO O 240 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

FD SET(fd, & nput);
FD SET(sock, & nput);

max_fd = (sock > fd ? sock : fd) + 1;
/* Initialize the tinmout structure */

ti meout.tv_sec 10;
ti meout.tv_usec 0;

/* Do the select */
n = select(max_fd, & nput, NULL, NULL, &tinmeout);

/[* See if there was an error */
if (n <0
perror("select failed");
else if (n == 0)
put s(" Tl MEQUT") ;
el se
{
/* We have input */
if (FD_I SSET(fd, & nput))
process_fd();
if (FD_I SSET(sock, & nput))
process_socket ();
}

Y ou'll notice that we first check the return value of the select system call. Values of 0 and -1 yield the appropriate warning and
error messages. Values greater than 0 mean that we have data pending on one or more file descriptors.

To determine which file descriptor(s) have pending input, we use the FD_ISSET macro to test the input set for each file
descriptor. If the file descriptor flag is set then the condition exists (input pending in this case) and we need to do something.

Using SELECT with the X Intrinsics Library

The X Intrinsics library provides an interface to the select system call via the XtAppAddinput(3x) and XtAppRemovel nput(3x)
functions:

i nt Xt AppAddIl nput (Xt AppCont ext context, int fd, int mask,
Xt I nput Proc proc, XtPointer data);
voi d Xt AppRenovel nput (Xt AppCont ext context, int input);

The select system call isused internally to implement timeouts, work procedures, and check for input from the X server.
These functions can be used with any Xt-based toolkit including Xaw, Lesstif, and Motif.

The proc argument to XtAppAddinput specifies the function to call when the selected condition (e.g. input available) exists on
the file descriptor. In the previous example you could specify the process fd or process_socket functions.

Because Xt limits your access to the select system call, you'll need to implement timeouts through another mechanism,
probably via XtAppAddTimeout(3x).

http://www.easysw.com/~mike/serial/serial.ntmlO O 250 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Appendix A, Pinouts
This appendix provides pinout information for many of the common seria ports you will find.

RS-232 Pinouts

RS-232 comesin three flavors (A, B, C) and uses a 25-pin D-Sub connector:

Figure 2 - RS-232 Connector

1 13
S0 00O0 OGSO OS
S0 000000000
14 25

Table 12 - RS-232 Signals

IPin | Description |Pin | Description

11 |Earth Ground 114 |Secondary TXD

2 |TXD - Transmitted Data |15 |Transmit Clock

3 |RXD-ReceivedData |16 |Secondary RXD

4 |RTS-Request ToSend |17 |Receiver Clock

5 |CTS-Clear ToSend |18 |Unassigned

6 |DSR-DataSetReady |19 [Secondary RTS

7 |GND - Logic Ground 20 |DTR - Data Terminal Ready
8 |DCD - Data Carrier Detect |21 |Signal Quality Detect

9 |Reserved 22 |Ring Detect
10 |Reserved 23 |DataRate Select
11 |Unassigned 24 |Transmit Clock
12 |Secondary DCD 25 |Unassigned

13 [Secondary CTS

RS-422 Pinouts

RS-422 also uses a 25-pin D-Sub connector, but with differential signals:

Figure 3 - RS-422 Connector

1 13
S0 00O0 OGSO OS
S0 000000000

14 25

Table 13 - RS-422 Signals

http://www.easysw.com/~mike/serial/serial.ntmlO O 260 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

|Pin | Description |Pin | Description
'l |Earth Ground 114 |[TXD+

2 |[TXD- - Transmitted Data |15 |Transmit Clock-

3 |RXD--RecdivedData |16 |RXD+

4 |RTS--Request ToSend |17 |Receiver Clock-

5 |CTS--Clear To Send 18 |Unassigned

6 |DSR - Data Set Ready 119 |RTS+

7 |GND - Logic Ground 20 |DTR- - Data Terminal Ready
8 |DCD- - Data Carrier Detect [21 |Signal Quality Detect

9 |Reserved 22 |Unassigned

110 |Reserved 23 [DTR+

11 |Unassigned 24 |Transmit Clock+

112 |DCD+ 25 |Receiver Clock+

13 [CTS+

RS-574 (IBM PC/AT) Pinouts

The RS-574 interface is used exclusively by PC manufacturers and uses a 9-pin male D-Sub connector:

Figure 4 - RS-574 Connector

1. 00 .5
090
6 9
Table 14 - RS-574 (IBM PC/AT) Signals
|Pin | Description |Pin | Description
1 |DCD - DataCarrier Detect 6 |Data Set Ready
2 |RXD - Received Data 7 |RTS- Request To Send

3 |[TXD- Transmitted Data |8 |CTS- Clear To Send
4 |DTR-DataTerminal Ready |9 |Ring Detect
5 |GND - Logic Ground

SGI Pinouts

Older SGI equipment uses a 9-pin female D-Sub connector. Unlike RS-574, the SGI pinouts nearly match those of RS-232:

Figure 5 - SGI 9-Pin Connector

http://www.easysw.com/~mike/serial/serial.ntmlO O 270 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

%. 09 ii
2090
6 9
Table 15 - SGI 9-Pin DSUB Signals
IPin | Description IPin | Description
11 |Earth Ground 6 |DSR - Data Set Ready

2 |TXD - Transmitted Data |7 |GND - Logic Ground

3 |RXD-ReceivedData |8 |DCD - Data Carrier Detect
4 |RTS-Request ToSend |9 |DTR - Data Terminal Ready
5 |CTS- Clear To Send

The SGI Indigo, Indigo2, and Indy workstations use the Apple 8-pin MiniDIN connector for their serial ports:

Figure 6 - SGI 8-Pin Connector

Table 16 - SGI 8-Pin MiniDIN Signals

IPin | Description |Pin | Description

1 |DTR-DataTerminal Ready [5 |RXD - Received Data

2 |CTS- Clear To Send 6 |RTS- Request To Send
3 |TXD-Transmitted Data |7 |DCD - Data Carrier Detect
4 |GND - Logic Ground 8 |GND - Logic Ground

Appendix B, ASCII Control Codes

This chapter liststhe ASCII control codes and their names.

Control Codes

The following ASCII characters are used for control purposes:
Table 17 - ASCII Control Codes

| Name | Binary |Octal |Decimal |Hexadecimal
INUL /00000000 [000 |0 100
|SOH 00000001 (001 |1 01

http://www.easysw.com/~mike/serial/serial.ntmlO O 280 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

STX 00000010 (002 |2 02
[ETX 00000011 [003 |3 03
[EOT 00000100 |004 |4 04
[ENQ 00000101 (005 |5 105
IACK 00000110 (006 |6 106
IBEL 00000111 (007 |7 07
BS 00001000 010 (8 08
HT 00001001 (011 |9 09
INL 00001010 012 |10 0A
VT 00001011 013 |11 0B
INP, FF 00001100 014 |12 oc
| Name | Binary |Octal |Decimal |Hexadecimal
CR 00001101 015 |13 0D
SO 00001110 016 |14 0E
S 00001111 (017 (15 OF
DLE 00010000 (020 (16 10
XON, DC1 (00010001 021 |17 11
IDC2 00010010 (022 |18 12
XOFF, DC3 00010011 023 |19 13
DC4 00010100 (024 |20 14
INAK 00010101 (025 |21 15
SYN 00010110 026 |22 16
ETB 00010111 (027 |23 17
ICAN 00011000 (030 |24 18
EM 00011001 (031 |25 19
SV 00011010 032 |26 1A
ESC 00011011 (033 |27 1B
FS 00011100 034 |28 1c
GS 00011101 |035 |29 1D
RS 00011110 |036 |30 1E
us 00011111 |037 |31 1F

Appendix C, GNU Free Documentation License

Version 1.2, November 2002

Copyright (C 2000, 2001, 2002 Free Software Foundation, Inc.
59 Tenple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is pernmitted to copy and distribute verbatimcopies

http://www.easysw.com/~mike/serial/serial.ntmlO O 290 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

of this Iicense docunent, but changing it is not allowed.
0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher away to get credit for
their work, while not being considered responsible for modifications made by others.

This Licenseisakind of "copyleft”, which means that derivative works of the document must themselves be free in the same
sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: afree program should come with manuals providing the same freedoms that the software does. But this
Licenseis not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. Such a notice grants aworld-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The "Document”, below, refersto any such manua or work. Any
member of the public isalicensee, and is addressed as "you". Y ou accept the license if you copy, modify or distribute the
work in away requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or
with modifications and/or translated into another language.

A "Secondary Section" is anamed appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document isin part atextbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The"Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in
the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts' are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in aformat whose specification is
available to the genera public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A
copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readersis not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent” is called "Opague'.

http://www.easysw.com/~mike/serial/serial.ntmlO O 300 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input
format, SGML or XML using apublicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opague formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/
or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the
material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work'stitle, preceding the beginning of the body of the text.

A section "Entitled XY Z" means a named subunit of the Document whose title either is precisely XY Z or contains XYZ in
parentheses following text that translates XY Z in another language. (Here XY Z stands for a specific section name mentioned
below, such as " Acknowledgements’, "Dedications’, "Endorsements’, or "History".) To "Preserve the Title" of such a section
when you modify the Document means that it remains a section "Entitled XY Z" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.
These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

Y ou may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this
License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. Y ou may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute alarge enough number of copies you must also follow the conditions in section 3.

Y ou may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies (or copies in mediathat commonly have printed covers) of the Document, numbering more than
100, and the Document's license notice requires Cover Texts, you must enclose the copiesin coversthat carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. Y ou may add other material on the coversin addition. Copying with changes
limited to the covers, aslong as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many asfit
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opague copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opague copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opague copy (directly or through
your agents or retailers) of that edition to the public.

http://www.easysw.com/~mike/serial/serial.ntmlO O 310 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

It isrequested, but not required, that you contact the authors of the Document well before redistributing any large number of
copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

Y ou may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided
that you release the Modified Version under precisely this License, with the Modified Version filling the role of the
Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition,
you must do these things in the Modified Version:

. A.Useinthe Title Page (and on the covers, if any) atitle distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). Y ou may use the
sametitle as aprevious version if the original publisher of that version gives permission.

. B. List onthe Title Page, as authors, one or more persons or entities responsible for authorship of the modificationsin
the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if
it has fewer than five), unless they release you from this requirement.

. C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

. D. Preserve al the copyright notices of the Document.

. E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

. F.Include, immediately after the copyright notices, alicense notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum below.

. G. Preservein that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's
license notice.

. H. Include an unaltered copy of this License.

. |. Preservethe section Entitled "History", Preserveits Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If thereis no section Entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the "History" section. Y ou may omit a network location for awork that was published at least four years
before the Document itself, or if the original publisher of the version it refers to gives permission.

. K. For any section Entitled " Acknowledgements" or "Dedications’, Preserve the Title of the section, and preservein
the section al the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

. L. Preserveall the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the
equivalent are not considered part of the section titles.

. M. Delete any section Entitled "Endorsements”. Such a section may not be included in the Modified Version.

. N. Do not retitle any existing section to be Entitled "Endorsements” or to conflict in title with any Invariant Section.

. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no
material copied from the Document, you may at your option designate some or all of these sections asinvariant. To do this,
add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any
other section titles.

Y ou may add a section Entitled "Endorsements”, provided it contains nothing but endorsements of your Modified Version by
various parties--for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

Y ou may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to

http://www.easysw.com/~mike/serial/serial.ntmlO O 320 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

the end of the list of Cover Textsin the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text
may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or
to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

Y ou may combine the Document with other documents released under this License, under the terms defined in section 4
above for modified versions, provided that you include in the combination al of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with asingle copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titlesin the list of Invariant Sectionsin the license
notice of the combined work.

In the combination, you must combine any sections Entitled "History™ in the various original documents, forming one section
Entitled "History"; likewise combine any sections Entitled " Acknowledgements', and any sections Entitled "Dedications".
Y ou must delete all sections Entitled "Endorsements.”

6. COLLECTIONSOF DOCUMENTS

Y ou may make a collection consisting of the Document and other documents released under this License, and replace the
individual copies of this License in the various documents with a single copy that isincluded in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documentsin all other respects.

Y ou may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on avolume
of astorage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit
the legal rights of the compilation's users beyond what the individual works permit. When the Document isincluded in an
aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document's Cover Texts may be placed on coversthat bracket the Document within the
aggregate, or the electronic equivalent of coversif the Document isin electronic form. Otherwise they must appear on printed
coversthat bracket the whole aggregate.

8. TRANSLATION

http://www.easysw.com/~mike/serial/serial.ntmlO O 330 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

Trandation is considered a kind of modification, so you may distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may
include tranglations of some or all Invariant Sectionsin addition to the original versions of these Invariant Sections. Y ou may
include atrandation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that
you also include the original English version of this License and the original versions of those notices and disclaimers. In case
of adisagreement between the trandlation and the original version of this License or anotice or disclaimer, the original version
will prevail.

If asection in the Document is Entitled "Acknowledgements®, "Dedications’, or "History", the requirement (section 4) to
Preserveits Title (section 1) will typically require changing the actual title.

9. TERMINATION

Y ou may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any
other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THISLICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the Licenseis given a distinguishing version number. If the Document specifies that a particular numbered
version of thisLicense "or any later version” appliesto it, you have the option of following the terms and conditions either of
that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify aversion number of this License, you may choose any version ever published (not as a draft) by
the Free Software Foundation.

How to use this License for your documents

To usethis License in adocument you have written, include a copy of the License in the document and put the following
copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.

Perm ssion is granted to copy, distribute and/or nodify this docunent

under the ternms of the GNU Free Docunentation License, Version 1.2

or any l|later version published by the Free Software Foundati on;

with no Invariant Sections, no Front-Cover Texts, and no Back- Cover
Texts. A copy of the license is included in the section entitled "G\U

Free Docunentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front - Cover Texts being LIST, and with the Back-Cover Texts being LI ST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to
suit the situation.

http://www.easysw.com/~mike/serial/serial.ntmlO O 340 35 O O 2006-6-9 14:52:46

Serial Programming Guide for POSIX Operating Systems

If your document contains nontrivial examples of program code, we recommend releasing these examplesin parallel under
your choice of free software license, such asthe GNU General Public License, to permit their usein free software.

Appendix D, Change History

This appendix lists the changes that have been made in this edition.

Edition 5, Revision 6

The following changes were made for the 6th revision:

. The select() example did not correctly use the FD macros.
. Thetitle page and this appendix were not properly updated.

Edition 5, Revision 5

The following changes were made for the 5th revision:

. The select() documentation did not correctly describe the FD macros.
. Appendix C was missing the "how to use" part of the GNU FDL.

Edition 5, Revision 4
The following changes were made for the 4th revision:

. Changed the description of the read() system call semanticsin chapter 1.
. Added descriptions for VSTART and VSTOP to chapter 2.

Edition 5, Revision 3

The following changes were made for the 3rd revision:

. Now use the GNU Free Documentation License for the guide.

. Changed the examplesto use the Linux serial port filenames.

. Put theinfrastructure in place to allow for easier translations of the guide.
. Theguidetext isnow fully justified.

http://www.easysw.com/~mike/serial/serial.ntmlO O 350 35 O O 2006-6-9 14:52:46

	easysw.com
	Serial Programming Guide for POSIX Operating Systems

	Table of Contents
	Chapter 1, Basics of Serial Communications
	What Are Serial Communications?
	What Is RS-232?
	Signal Definitions
	Asynchronous Communications
	What Are Full Duplex and Half Duplex?
	Flow Control
	What Is a Break?

	Synchronous Communications
	Accessing Serial Ports
	Serial Port Files
	Opening a Serial Port
	Open Options

	Writing Data to the Port
	Reading Data from the Port
	Closing a Serial Port

	Chapter 2, Configuring the Serial Port
	The POSIX Terminal Interface
	Control Options
	Setting the Baud Rate
	Setting the Character Size
	Setting Parity Checking
	Setting Hardware Flow Control

	Local Options
	Choosing Canonical Input
	Choosing Raw Input
	A Note About Input Echo

	Input Options
	Setting Input Parity Options
	Setting Software Flow Control

	Output Options
	Choosing Processed Output
	Choosing Raw Output

	Control Characters
	Setting Software Flow Control Characters
	Setting Read Timeouts

	Chapter 3, MODEM Communications
	What Is a MODEM?
	Communicating With a MODEM
	Standard MODEM Commands
	Common MODEM Communication Problems

	Chapter 4, Advanced Serial Programming
	Serial Port IOCTLs
	Getting the Control Signals
	Setting the Control Signals
	Getting the Number of Bytes Available
	Selecting Input from a Serial Port
	The SELECT System Call
	Using the SELECT System Call
	Using SELECT with the X Intrinsics Library

	Appendix A, Pinouts
	Appendix B, ASCII Control Codes
	Appendix C, GNU Free Documentation License
	Appendix D, Change History

