ALESSANDRO RUBINI & JONATHAN CORBET

A UNIX-COMPATIBLE OPERATING SYSTEM

O’REILLY"

PREFACE

This is, on the surface, a book about writing device drivers for the Linux system.
That is a worthy goal, of course; the flow of new hardware products is not likely
to slow down anytime soon, and somebody is going to have to make all those
new gadgets work with Linux. But this book is also about how the Linux kernel
works and how to adapt its workings to your needs or interests. Linux is an open
system; with this book, we hope, it will be more open and accessible to a larger
community of developers.

Much has changed with Linux since the first edition of this book came out. Linux
now runs on many more processors and supports a much wider variety of hard-
ware. Many of the internal programming interfaces have changed significantly.
Thus, the second edition. This book covers the 2.4 kernel, with all of the new fea-
tures that it provides, while still giving a look backward to earlier releases for
those who need to support them.

We hope you'll enjoy reading this book as much as we have enjoyed writing it.

Alessandro’s Introduction

As an electronic engineer and a do-it-yourself kind of person, I have always
enjoyed using the computer to control external hardware. Ever since the days of
my father’s Apple Ile, T have been looking for another platform where I could con-
nect my custom circuitry and write my own driver software. Unfortunately, the PC
of the 1980s wasn’t powerful enough, at either the software or the hardware level:
the internal design of the PC is much worse than that of the Apple II, and the
available documentation has long been unsatisfying. But then Linux appeared, and
I decided to give it a try by buying an expensive 386 motherboard and no propri-
etary software at all.

Xi

Preface

At the time, I was using Unix systems at the university and was greatly excited by
the smart operating system, in particular when supplemented by the even smarter
utilities that the GNU project donates to the user base. Running the Linux kernel
on my own PC motherboard has always been an interesting experience, and I
could even write my own device drivers and play with the soldering iron once
again. 1 continue to tell people, “When I grow up, I wanna be a hacker,” and
GNU/Linux is the perfect platform for such dreams. That said, I don’t know if I
will ever grow up.

As Linux matures, more and more people get interested in writing drivers for cus-
tom circuitry and for commercial devices. As Linus Torvalds noted, “We're back to
the times when men were men and wrote their own device drivers.”

Back in 1996, I was hacking with my own toy device drivers that let me play with
some loaned, donated, or even home-built hardware. I already had contributed a
few pages to the Kernel Hacker’s Guide, by Michael Johnson, and began writing
kernel-related articles for Linux Journal, the magazine Michael founded and
directed. Michael put me in touch with Andy Oram at O’Reilly; he expressed an
interest in having me write a whole book about device drivers, and T accepted this
task, which kept me pretty busy for quite a lot of time.

In 1999 it was clear I couldn’t find the energy to update the book by myself: my
family had grown and I had enough programming work to keep busy producing
exclusively GPL'd software. Besides, the kernel had grown bigger and supported
more diverse platforms than it used to, and the API had turned more broad and
more mature. That's when Jonathan offered to help: he had just the right skills and
enthusiasm to start the update and to force me to stay on track with the sched-
ule—which slipped quite a lot anyway. He’s been an invaluable mate in the pro-
cess, which he pushed forward with good skills and dedication, definitely more
than I could put in. I really enjoyed working with him, both on a technical and
personal level.

Jon’s Introduction

I first started actively playing with Linux early in 1994, when I convinced my
employer to buy me a laptop from a company called, then, Fintronic Systems.
Having been a Unix user since the beginning of the 1980s, and having played
around in the source since about then, T was immediately hooked. Even in 1994,
Linux was a highly capable system, and the first truly free system that I had ever
been able to work with. I lost almost all my interest in working with proprietary
systems at that point.

I didn’t ever really plan to get into writing about Linux, though. Instead, when I
started talking with O’Reilly about helping with the second edition of this book, I
had recently quit my job of 18 years to start a Linux consulting company. As a way

Xii

Preface

of attracting attention to ourselves, we launched a Linux news site, Linux Weekly
News (bttp://lwn.net), which, among other things, covered kernel development. As
Linux exploded in popularity, the web site did too, and the consulting business
was eventually forgotten.

But my first interest has always been systems programming. In the early days, that
interest took the form of “fixing” the original BSD Unix paging code (which has to
have been a horrible hack job) or making recalcitrant tape drives work on a
VAX/VMS system (where source was available, if you didn’t mind the fact that it
was in assembly and Bliss, and came on microfiche only). As time passed, I got to
hack drivers on systems with names like Alliant, Ardent, and Sun, before moving
into tasks such as deploying Linux as a real-time radar data collection system or, in
the process of writing this book, fixing the I/O request queue locking in the Linux
floppy driver.

So I welcomed the opportunity to work on this book for several reasons. As much
as anything, it was a chance to get deeply into the code and to help others with a
similar goal. Linux has always been intended to be fun as well as useful, and play-
ing around with the kernel is one of the most fun parts of all—at least, for those
with a certain warped sense of fun. Working with Alessandro has been a joy, and I
must thank him for trusting me to hack on his excellent text, being patient with
me as I came up to speed and as I broke things, and for that jet-lagged bicycle
tour of Pavia. Writing this book has been a great time.

Audience of This Book

On the technical side, this text should offer a hands-on approach to understanding
the kernel internals and some of the design choices made by the Linux develop-
ers. Although the main, official target of the book is teaching how to write device
drivers, the material should give an interesting overview of the kernel implementa-
tion as well.

Although real hackers can find all the necessary information in the official kernel
sources, usually a written text can be helpful in developing programming skills.
The text you are approaching is the result of hours of patient grepping through
the kernel sources, and we hope the final result is worth the effort it took.

This book should be an interesting source of information both for people who
want to experiment with their computer and for technical programmers who face
the need to deal with the inner levels of a Linux box. Note that “a Linux box” is a
wider concept than “a PC running Linux,” as many platforms are supported by our
operating system, and kernel programming is by no means bound to a specific
platform. We hope this book will be useful as a starting point for people who
want to become kernel hackers but don’t know where to start.

X1ii

Preface

The Linux enthusiast should find in this book enough food for her mind to start
playing with the code base and should be able to join the group of developers
that is continuously working on new capabilities and performance enhancements.
This book does not cover the Linux kernel in its entirety, of course, but Linux
device driver authors need to know how to work with many of the kernel’s sub-
systems. It thus makes a good introduction to kernel programming in general.
Linux is still a work in progress, and there’s always a place for new programmers
to jump into the game.

If, on the other hand, you are just trying to write a device driver for your own
device, and you don’t want to muck with the kernel internals, the text should be
modularized enough to fit your needs as well. If you don’t want to go deep into
the details, you can just skip the most technical sections and stick to the standard
API used by device drivers to seamlessly integrate with the rest of the kernel.

The main target of this book is writing kernel modules for version 2.4 of the Linux
kernel. A module is object code that can be loaded at runtime to add new func-
tionality to a running kernel. Wherever possible, however, our sample code also
runs on versions 2.2 and 2.0 of the kernel, and we point out where things have
changed along the way.

Organization of the Material

The book introduces its topics in ascending order of complexity and is divided
into two parts. The first part (Chapters 1 to 10) begins with the proper setup of
kernel modules and goes on to describe the various aspects of programming that
you'll need in order to write a full-featured driver for a char-oriented device. Every
chapter covers a distinct problem and includes a “symbol table” at the end, which
can be used as a reference during actual development.

Throughout the first part of the book, the organization of the material moves
roughly from the software-oriented concepts to the hardware-related ones. This
organization is meant to allow you to test the software on your own computer as
far as possible without the need to plug external hardware into the machine. Every
chapter includes source code and points to sample drivers that you can run on any
Linux computer. In Chapter 8 and Chapter 9, however, we’ll ask you to connect an
inch of wire to the parallel port in order to test out hardware handling, but this
requirement should be manageable by everyone.

The second half of the book describes block drivers and network interfaces and
goes deeper into more advanced topics. Many driver authors will not need this
material, but we encourage you to go on reading anyway. Much of the material
found there is interesting as a view into how the Linux kernel works, even if you
do not need it for a specific project.

xiv

Preface

Background Information

In order to be able to use this book, you need to be confident with C program-
ming. A little Unix expertise is needed as well, as we often refer to Unix com-
mands and pipelines.

At the hardware level, no previous expertise is required to understand the material
in this book, as long as the general concepts are clear in advance. The text isn’t
based on specific PC hardware, and we provide all the needed information when
we do refer to specific hardware.

Several free software tools are needed to build the kernel, and you often need
specific versions of these tools. Those that are too old can lack needed features,
while those that are too new can occasionally generate broken kernels. Usually,
the tools provided with any current distribution will work just fine. Tool version
requirements vary from one kernel to the next; consult Documentation/Changes in
the source tree of the kernel you are using for exact requirements.

Sources of Further Information

Most of the information we provide in this book is extracted directly from the ker-
nel sources and related documentation. In particular, pay attention to the Docu-
mentation directory that is found in the kernel source tree. There is a wealth of
useful information there, including documentation of an increasing part of the ker-
nel API (in the DocBook subdirectory).

There are a few interesting books out there that extensively cover related topics;
they are listed in the bibliography.

There is much useful information available on the Internet; the following is a sam-
pling. Internet sites, of course, tend to be highly volatile while printed books are
hard to update. Thus, this list should be regarded as being somewhat out of date.

htp.//www.kernel.org

Sp://ftp.kernel.org
This site is the home of Linux kernel development. You'll find the latest kernel
release and related information. Note that the FTP site is mirrored throughout
the world, so you’ll most likely find a mirror near you.

btp.//www.linuxdoc.org
The Linux Documentation Project carries a lot of interesting documents called
“HOWTOSs”; some of them are pretty technical and cover kernel-related topics.

XU

Preface

btp./www.linux-mag.com/depts/gear.html
The “Gearheads only” section from Linux Magazine often runs kernel-oriented
articles from well-known developers.

http./www.linux.it/kerneldocs

This page contains many kernel-oriented magazine articles written by Alessan-
dro.

bttp://lwn.net
At the risk of seeming self-serving, we’ll point out this news site (edited by
one of your authors) which, among other things, offers regular kernel devel-
opment coverage.

btip.//kt.zork.net
Kernel Traffic is a popular site that provides weekly summaries of discussions
on the Linux kernel development mailing list.

bttp://www.atnf.csivo.au/ rgooch/linux/docs/kernel-newsflash.btml
The Kernel Newsflash site is a clearinghouse for late-breaking kernel news. In
particular, it concentrates on problems and incompatibilities in current kernel
releases; thus, it can be a good resource for people trying to figure out why
the latest development kernel broke their drivers.

htp.//www.kernelnotes.org
Kernel Notes is a classic site with information on kernel releases, unofficial
patches, and more.

btp://www.kernelnewbies.org
This site is oriented toward new kernel developers. There is beginning infor-
mation, an FAQ, and an associated IRC channel for those looking for immedi-
ate assistance.

btip://lksr.org
The Linux Kernel Source Reference is a web interface to a CVS archive con-
taining an incredible array of historical kernel releases. It can be especially
useful for finding out just when a particular change occurred.

bitp.//www.linux-mm.org
This page is oriented toward Linux memory management development. It con-
tains a fair amount of useful information and an exhaustive list of kernel-ori-
ented web links.

htp.//www.conecta.it/linux
This Ttalian site is one of the places where a Linux enthusiast keeps updated
information about all the ongoing projects involving Linux. Maybe you already
know an interesting site with HTTP links about Linux development; if not, this
one is a good starting point.

XVi

Preface

Online Version and License

The authors have chosen to make this book freely available under the GNU Free
Documentation License, version 1.1.

Full license
bttp.//www.oreilly.com/catalog/linuxdrive2/chapter/licenseinfo.btmi,

HTML
btp://www.oreilly.com/catalog/linuxdrive2/chapter/book,

DocBook
bttp://www.oreilly.com/catalog/linuxdrive2/chapter/bookindex.xml,

PDF
bttp.//www.oreilly.com/catalog/linuxdrive2/chapter/bookindexpdf.btmi.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Ttalic Used for file and directory names, program and command
names, command-line options, URLs, and new terms
Constant Width Used in examples to show the contents of files or the out-

put from commands, and in the text to indicate words
that appear in C code or other literal strings

Constant Italic Used to indicate variable options, keywords, or text that
the user is to replace with an actual value

Constant Bold Used in examples to show commands or other text that
should be typed literally by the user

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

XUii

Preface

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any addi-
tional information. You can access this page at:

bup.//www.oreilly.com/catalog/linuxdrive2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Cen-
ters,and the O’Reilly Network, see our web site at:

btp://www.oreilly.com

Acknowledgments

This book, of course, was not written in a vacuum; we would like to thank the
many people who have helped to make it possible.

I (Alessandro) would like to thank the people that made this work possible. First
of all, the incredible patience of Federica, who went as far as letting me review the
first edition during our honeymoon, with a laptop in the tent. Giorgio and Giulia
have only been involved in the second edition of the book, and helped me stay in
touch with reality by eating pages, pulling wires, and crying for due attention. I
must also thank all four grandparents, who came to the rescue when the deadlines
were tight and took over my fatherly duties for whole days, letting me concentrate
on code and coffee. I still owe a big thanks to Michael Johnson, who made me
enter the world of writing. Even though this was several years ago, he’s still the
one that made the wheel spin; earlier, I had left the university to avoid writing arti-
cles instead of software. Being an independent consultant, I have no employer
that kindly allowed me to work on the book; on the other hand, T owe due
acknowledgment to Francesco Magenta and Rodolfo Giometti, who are helping
me as “dependent consultants.” Finally, T want to acknowledge the free-software
authors who actually taught me how to program without even knowing me; this

XUiil

Preface

includes both kernel and user-space authors I enjoyed reading, but they are too
many to list.

I (Jon) am greatly indebted to many people; first and foremost I wish to thank my
wife, Laura, who put up with the great time demands of writing a book while
simultaneously trying to make a “dotcom” business work. My children, Michele
and Giulia, have been a constant source of joy and inspiration. Numerous people
on the linux-kernel list showed great patience in answering my questions and set-
ting me straight on things. My colleagues at LWN.net have been most patient with
my distraction, and our readers’ support of the LWN kernel page has been out-
standing. This edition probably would not have happened without the presence of
Boulder’s local community radio station (appropriately named KGNU), which
plays amazing music, and the Lake Eldora ski lodge, which allowed me to camp
out all day with a laptop during my kids’ ski lessons and served good coffee. I
owe gratitude to Evi Nemeth for first letting me play around in the early BSD
source on her VAX, to William Waite for really teaching me to program, and to Rit
Carbone of the National Center for Atmospheric Research (NCAR), who got me
started on a long career where I learned almost everything else.

We both wish to thank our editor, Andy Oram; this book is a vastly better product
as a result of his efforts. And obviously we owe a lot to the smart people who
pushed the free-software idea and still keep it running (that’s mainly Richard Stall-
man, but he’s definitely not alone).

We have also been helped at the hardware level; we couldn’t study so many plat-
forms without external help. We thank Intel for loaning an early 1A-64 system, and
Rebel.com for donating a Netwinder (their ARM-based tiny computer). Prosa Labs,
the former Linuxcare-Italia, loaned a pretty fat PowerPC system; NEC Electronics
donated their interesting development system for the VR4181 processor—that’s a
palmtop where we could put a GNU/Linux system on flash memory. Sun-Italia
loaned both a SPARC and a SPARC64 system. All of those companies and those
systems helped keep Alessandro busy in debugging portability issues and forced
him to get one more room to fit his zoo of disparate silicon beasts.

The first edition was technically reviewed by Alan Cox, Greg Hankins, Hans Ler-
men, Heiko Eissfeldt, and Miguel de Icaza (in alphabetic order by first name). The
technical reviewers for the second edition were Allan B. Cruse, Christian Morgner,
Jake Edge, Jeff Garzik, Jens Axboe, Jerry Cooperstein, Jerome Peter Lynch, Michael
Kerrisk, Paul Kinzelman, and Raph Levien. Together, these people have put a vast
amount of effort into finding problems and pointing out possible improvements to
our writing.

Last but certainly not least, we thank the Linux developers for their relentless
work. This includes both the kernel programmers and the user-space people, who
often get forgotten. In this book we chose never to call them by name in order to
avoid being unfair to someone we might forget. We sometimes made an exception
to this rule and called Linus by name; we hope he doesn’t mind, though.

Xix

CHAPTER ONE

AN INTRODUCTION TO
DEVICE DRIVERS

As the popularity of the Linux system continues to grow, the interest in writing
Linux device drivers steadily increases. Most of Linux is independent of the hard-
ware it runs on, and most users can be (happily) unaware of hardware issues. But,
for each piece of hardware supported by Linux, somebody somewhere has written
a driver to make it work with the system. Without device drivers, there is no func-
tioning system.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
programming interface; they hide completely the details of how the device works.
User activities are performed by means of a set of standardized calls that are inde-
pendent of the specific driver; mapping those calls to device-specific operations
that act on real hardware is then the role of the device driver. This programming
interface is such that drivers can be built separately from the rest of the kernel,
and “plugged in” at runtime when needed. This modularity makes Linux drivers
easy to write, to the point that there are now hundreds of them available.

There are a number of reasons to be interested in the writing of Linux device
drivers. The rate at which new hardware becomes available (and obsolete!) alone
guarantees that driver writers will be busy for the foreseeable future. Individuals
may need to know about drivers in order to gain access to a particular device that
is of interest to them. Hardware vendors, by making a Linux driver available for
their products, can add the large and growing Linux user base to their potential
markets. And the open source nature of the Linux system means that if the driver
writer wishes, the source to a driver can be quickly disseminated to millions of
users.

Chapter 1: An Introduction to Device Drivers

This book will teach you how to write your own drivers and how to hack around
in related parts of the kernel. We have taken a device-independent approach; the
programming techniques and interfaces are presented, whenever possible, without
being tied to any specific device. Each driver is different; as a driver writer, you
will need to understand your specific device well. But most of the principles and
basic techniques are the same for all drivers. This book cannot teach you about
your device, but it will give you a handle on the background you need to make
your device work.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen-
eral; this may help you understand how your machine works and why things
aren’t always as fast as you expect or don’t do quite what you want. We'll intro-
duce new ideas gradually, starting off with very simple drivers and building upon
them; every new concept will be accompanied by sample code that doesn’t need
special hardware to be tested.

This chapter doesn’t actually get into writing code. However, we introduce some
background concepts about the Linux kernel that youll be glad you know later,
when we do launch into programming.

The Role of the Device Driver

As a programmer, you will be able to make your own choices about your driver,
choosing an acceptable trade-off between the programming time required and the
flexibility of the result. Though it may appear strange to say that a driver is “flexi-
ble,” we like this word because it emphasizes that the role of a device driver is
providing mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts:
“what capabilities are to be provided” (the mechanism) and “how those capabili-
ties can be used” (the policy). If the two issues are addressed by different parts of
the program, or even by different programs altogether, the software package is
much easier to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X
server, which knows the hardware and offers a unified interface to user programs,
and the window and session managers, which implement a particular policy with-
out knowing anything about the hardware. People can use the same window man-
ager on different hardware, and different users can run different configurations on
the same workstation. Even completely different desktop environments, such as
KDE and GNOME, can coexist on the same system. Another example is the lay-
ered structure of TCP/IP networking: the operating system offers the socket
abstraction, which implements no policy regarding the data to be transferred,
while different servers are in charge of the services (and their associated policies).

The Role of the Device Driver

Moreover, a server like fipd provides the file transfer mechanism, while users can
use whatever client they prefer; both command-line and graphic clients exist, and
anyone can write a new user interface to transfer files.

Where drivers are concerned, the same separation of mechanism and policy
applies. The floppy driver is policy free—its role is only to show the diskette as a
continuous array of data blocks. Higher levels of the system provide policies, such
as who may access the floppy drive, whether the drive is accessed directly or via a
filesystem, and whether users may mount filesystems on the drive. Since different
environments usually need to use hardware in different ways, it’s important to be
as policy free as possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particu-
lar policies on the user, since different users have different needs. The driver
should deal with making the hardware available, leaving all the issues about how
to use the hardware to the applications. A driver, then, is flexible if it offers access
to the hardware capabilities without adding constraints. Sometimes, however,
some policy decisions must be made. For example, a digital I/O driver may only
offer byte-wide access to the hardware in order to avoid the extra code needed to
handle individual bits.

You can also look at your driver from a different perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should
appear: different drivers can offer different capabilities, even for the same device.
The actual driver design should be a balance between many different considera-
tions. For instance, a single device may be used concurrently by different pro-
grams, and the driver programmer has complete freedom to determine how to
handle concurrency. You could implement memory mapping on the device inde-
pendently of its hardware capabilities, or you could provide a user library to help
application programmers implement new policies on top of the available primi-
tives, and so forth. One major consideration is the trade-off between the desire to
present the user with as many options as possible and the time in which you have
to do the writing as well as the need to keep things simple so that errors don’t
creep in.

Policy-free drivers have a number of typical characteristics. These include support
for both synchronous and asynchronous operation, the ability to be opened multi-
ple times, the ability to exploit the full capabilities of the hardware, and the lack of
software layers to “simplify things” or provide policy-related operations. Drivers of
this sort not only work better for their end users, but also turn out to be easier to
write and maintain as well. Being policy free is actually a common target for soft-
ware designers.

Chapter 1: An Introduction to Device Drivers

Many device drivers, indeed, are released together with user programs to help
with configuration and access to the target device. Those programs can range from
simple utilities to complete graphical applications. Examples include the tunelp
program, which adjusts how the parallel port printer driver operates, and the
graphical cardctl utility that is part of the PCMCIA driver package. Often a client
library is provided as well, which provides capabilities that do not need to be
implemented as part of the driver itself.

The scope of this book is the kernel, so we’ll try not to deal with policy issues, or
with application programs or support libraries. Sometimes we’ll talk about different
policies and how to support them, but we won’t go into much detail about pro-
grams using the device or the policies they enforce. You should understand, how-
ever, that user programs are an integral part of a software package and that even
policy-free packages are distributed with configuration files that apply a default
behavior to the underlying mechanisms.

Splitting the Kernel

In a Unix system, several concurrent processes attend to different tasks. Each pro-
cess asks for system resources, be it computing power, memory, network connec-
tivity, or some other resource. The kernel is the big chunk of executable code in
charge of handling all such requests. Though the distinction between the different
kernel tasks isn’t always clearly marked, the kernel’s role can be split, as shown in
Figure 1-1, into the following parts:

Process management

The kernel is in charge of creating and destroying processes and handling
their connection to the outside world (input and output). Communication
among different processes (through signals, pipes, or interprocess communica-
tion primitives) is basic to the overall system functionality and is also handled
by the kernel. In addition, the scheduler, which controls how processes share
the CPU, is part of process management. More generally, the kernel’s process
management activity implements the abstraction of several processes on top of
a single CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with
it is a critical one for system performance. The kernel builds up a virtual
addressing space for any and all processes on top of the limited available
resources. The different parts of the kernel interact with the memory-manage-
ment subsystem through a set of function calls, ranging from the simple mail-
loc/ free pair to much more exotic functionalities.

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of
unstructured hardware, and the resulting file abstraction is heavily used

Splitting the Kernel

The System Call Interface

TR

. Process i Memory §: Filesystems §: Device ¥ Networking
i management § | management § | : control Kernel
subsystems

Concurrency, Virtual Files and dirs: Tiys & i Features
multitasking memory the VFS device access COMMECHVIlY i oromented
i i File system i Character i Network i
] Arcl:l- i Memory types i devices subsystem
ependent § i manager :
%ode : ‘ o . - Software
: i e SUPDOIT
i Block devices § : IF drivers
DE § DO
é E (RN ERRRRN NI o o o e
CPU Memory Disks & CDs Consoles, Network
etc. interfaces

D features implemented as modules

Figure 1-1. A split view of the kernel

throughout the whole system. In addition, Linux supports multiple filesystem
types, that is, different ways of organizing data on the physical medium. For
example, diskettes may be formatted with either the Linux-standard ext2
filesystem or with the commonly used FAT filesystem.

Device control

Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are performed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from
the hard drive to the keyboard and the tape streamer. This aspect of the ker-
nel’s functions is our primary interest in this book.

Chapter 1: An Introduction to Device Drivers

Networking

Networking must be managed by the operating system because most network
operations are not specific to a process: incoming packets are asynchronous
events. The packets must be collected, identified, and dispatched before a
process takes care of them. The system is in charge of delivering data packets
across program and network interfaces, and it must control the execution of
programs according to their network activity. Additionally, all the routing and
address resolution issues are implemented within the kernel.

Toward the end of this book, in Chapter 16, you'll find a road map to the Linux
kernel, but these few paragraphs should suffice for now.

One of the good features of Linux is the ability to extend at runtime the set of fea-
tures offered by the kernel. This means that you can add functionality to the ker-
nel while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module.
The Linux kernel offers support for quite a few different types (or classes) of mod-
ules, including, but not limited to, device drivers. Each module is made up of
object code (not linked into a complete executable) that can be dynamically linked
to the running kernel by the insmod program and can be unlinked by the rmmod
program.

Figure 1-1 identifies different classes of modules in charge of specific tasks—a
module is said to belong to a specific class according to the functionality it offers.
The placement of modules in Figure 1-1 covers the most important classes, but is
far from complete because more and more functionality in Linux is being modular-
ized.

Classes of Devices and Modules

The Unix way of looking at devices distinguishes between three device types.
Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into
different types, or classes, is not a rigid one; the programmer can choose to build
huge modules implementing different drivers in a single chunk of code. Good pro-
grammers, nonetheless, usually create a different module for each new functional-
ity they implement, because decomposition is a key element of scalability and
extendability.

The three classes are the following:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like
a file); a char driver is in charge of implementing this behavior. Such a driver
usually implements at least the open, close, read, and write system calls. The

Classes of Devices and Modules

text console (/deuv/console) and the serial ports (/dev/ttySO and friends) are
examples of char devices, as they are well represented by the stream abstrac-
tion. Char devices are accessed by means of filesystem nodes, such as
/dev/tty1 and /dev/IpO. The only relevant difference between a char device and
a regular file is that you can always move back and forth in the regular file,
whereas most char devices are just data channels, which you can only access
sequentially. There exist, nonetheless, char devices that look like data areas,
and you can move back and forth in them; for instance, this usually applies to
frame grabbers, where the applications can access the whole acquired image
using mmap or Iseek.

Block devices

Like char devices, block devices are accessed by filesystem nodes in the /dev
directory. A block device is something that can host a filesystem, such as a
disk. In most Unix systems, a block device can be accessed only as multiples
of a block, where a block is usually one kilobyte of data or another power of
2. Linux allows the application to read and write a block device like a char
device—it permits the transfer of any number of bytes at a time. As a result,
block and char devices differ only in the way data is managed internally by
the kernel, and thus in the kernel/driver software interface. Like a char device,
each block device is accessed through a filesystem node and the difference
between them is transparent to the user. A block driver offers the kernel the
same interface as a char driver, as well as an additional block-oriented inter-
face that is invisible to the user or applications opening the /dev entry points.
That block interface, though, is essential to be able to mount a filesystem.

Network interfaces

Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure software device, like the loopback inter-
face. A network interface is in charge of sending and receiving data packets,
driven by the network subsystem of the kernel, without knowing how individ-
ual transactions map to the actual packets being transmitted. Though both Tel-
net and FTP connections are stream oriented, they transmit using the same
device; the device doesn’t see the individual streams, but only the data pack-
ets.

Not being a stream-oriented device, a network interface isn’t easily mapped to
a node in the filesystem, as /dev/ttyl is. The Unix way to provide access to
interfaces is still by assigning a unique name to them (such as eth0), but that
name doesn’t have a corresponding entry in the filesystem. Communication
between the kernel and a network device driver is completely different from
that used with char and block drivers. Instead of read and write, the kernel
calls functions related to packet transmission.

Other classes of driver modules exist in Linux. The modules in each class exploit
public services the kernel offers to deal with specific types of devices. Therefore,

Chapter 1: An Introduction to Device Drivers

one can talk of universal serial bus (USB) modules, serial modules, and so on. The
most common nonstandard class of devices is that of SCSI* drivers. Although every
peripheral connected to the SCSI bus appears in /dev as either a char device or a
block device, the internal organization of the software is different.

Just as network interface cards provide the network subsystem with hardware-
related functionality, so a SCSI controller provides the SCSI subsystem with access
to the actual interface cable. SCSI is a communication protocol between the com-
puter and peripheral devices, and every SCSI device responds to the same proto-
col, independently of what controller board is plugged into the computer. The
Linux kernel therefore embeds a SCSI implementation (i.e., the mapping of file
operations to the SCSI communication protocol). The driver writer has to imple-
ment the mapping between the SCSI abstraction and the physical cable. This map-
ping depends on the SCSI controller and is independent of the devices attached to
the SCSI cable.

Other classes of device drivers have been added to the kernel in recent times,
including USB drivers, FireWire drivers, and 120 drivers. In the same way that they
handled SCSI drivers, kernel developers collected class-wide features and exported
them to driver implementers to avoid duplicating work and bugs, thus simplifying
and strengthening the process of writing such drivers.

In addition to device drivers, other functionalities, both hardware and software,
are modularized in the kernel. Beyond device drivers, filesystems are perhaps the
most important class of modules in the Linux system. A filesystem type determines
how information is organized on a block device in order to represent a tree of
directories and files. Such an entity is not a device driver, in that there’s no explicit
device associated with the way the information is laid down; the filesystem type is
instead a software driver, because it maps the low-level data structures to higher-
level data structures. It is the filesystem that determines how long a filename can
be and what information about each file is stored in a directory entry. The filesys-
tem module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information,
such as access modes) to data structures stored in data blocks. Such an interface is
completely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you'll realize that such a software concept is vital to system operation. The ability
to decode filesystem information stays at the lowest level of the kernel hierarchy
and is of utmost importance; even if you write a block driver for your new CD-
ROM, it is useless if you are not able to run /s or ¢p on the data it hosts. Linux
supports the concept of a filesystem module, whose software interface declares
the different operations that can be performed on a filesystem inode, directory,

* SCSI is an acronym for Small Computer Systems Interface; it is an established standard in
the workstation and high-end server market.

Security Issues

file, and superblock. It’s quite unusual for a programmer to actually need to write
a filesystem module, because the official kernel already includes code for the most
important filesystem types.

Security Issues

Security is an increasingly important concern in modern times. We will discuss
security-related issues as they come up throughout the book. There are a few gen-
eral concepts, however, that are worth mentioning now.

Security has two faces, which can be called deliberate and incidental. One security
problem is the damage a user can cause through the misuse of existing programs,
or by incidentally exploiting bugs; a different issue is what kind of (mis)functional-
ity a programmer can deliberately implement. The programmer has, obviously,
much more power than a plain user. In other words, it's as dangerous to run a
program you got from somebody else from the root account as it is to give him or
her a root shell now and then. Although having access to a compiler is not a secu-
rity hole per se, the hole can appear when compiled code is actually executed,
everyone should be careful with modules, because a kernel module can do any-
thing. A module is just as powerful as a superuser shell.

Any security check in the system is enforced by kernel code. If the kernel has
security holes, then the system has holes. In the official kernel distribution, only
an authorized user can load modules; the system call create_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,* or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the ker-
nel, under the control of the system administrator. There are always exceptions,
however. As a device driver writer, you should be aware of situations in which
some types of device access could adversely affect the system as a whole, and
should provide adequate controls. For example, device operations that affect
global resources (such as setting an interrupt line) or that could affect other users
(such as setting a default block size on a tape drive) are usually only available to
sufficiently privileged users, and this check must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
current security problems are created, for example, by buffer overrun errors, in
which the programmer forgets to check how much data is written to a buffer, and
data ends up written beyond the end of the buffer, thus overwriting unrelated

* Version 2.0 of the kernel allows only the superuser to run privileged code, while version
2.2 has more sophisticated capability checks. We discuss this in “Capabilities and
Restricted Operations” in Chapter 5.

Chapter 1: An Introduction to Device Drivers

data. Such errors can compromise the entire system and must be avoided. Fortu-
nately, avoiding these errors is usually relatively easy in the device driver context,
in which the interface to the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
from user processes should be treated with great suspicion; never trust it unless
you can verify it. Be careful with uninitialized memory; any memory obtained
from the kernel should be zeroed or otherwise initialized before being made avail-
able to a user process or device. Otherwise, information leakage could result. If
your device interprets data sent to it, be sure the user cannot send anything that
could compromise the system. Finally, think about the possible effect of device
operations; if there are specific operations (e.g., reloading the firmware on an
adapter board, formatting a disk) that could affect the system, those operations
should probably be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the
kernel is concerned: because everybody has access to the source code, everybody
can break and recompile things. Although you can usually trust precompiled ker-
nels found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d
better not run a precompiled kernel. For example, a maliciously modified kernel
could allow anyone to load a module, thus opening an unexpected back door via
create_module.

Note that the Linux kernel can be compiled to have no module support whatso-
ever, thus closing any related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot, via the
capability mechanism.

Version Numbering

Before digging into programming, we’d like to comment on the version number-
ing scheme used in Linux and which versions are covered by this book.

First of all, note that every software package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a
particular version of one package to run a particular version of another package.
The creators of Linux distributions usually handle the messy problem of matching
packages, and the user who installs from a prepackaged distribution doesn’t need
to deal with version numbers. Those who replace and upgrade system software,
on the other hand, are on their own. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies;
the distribution’s package manager generally will not allow an upgrade until the
dependencies are satisfied.

10

Version Numbering

To run the examples we introduce during the discussion, you won’t need particu-
lar versions of any tool but the kernel; any recent Linux distribution can be used
to run our examples. We won'’t detail specific requirements, because the file Docu-
mentation/Changes in your kernel sources is the best source of such information if
you experience any problem.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.2.x
and 2.4.x) are the stable ones that are intended for general distribution. The odd
versions (such as 2.3.x), on the contrary, are development snapshots and are quite
ephemeral; the latest of them represents the current status of development, but
becomes obsolete in a few days or so.

This book covers versions 2.0 through 2.4 of the kernel. Our focus has been to
show all the features available to device driver writers in 2.4, the current version at
the time we are writing. We also try to cover 2.2 thoroughly, in those areas where
the features differ between 2.2 and 2.4. We also note features that are not available
in 2.0, and offer workarounds where space permits. In general, the code we show
is designed to compile and run on a wide range of kernel versions; in particular, it
has all been tested with version 2.4.4, and, where applicable, with 2.2.18 and
2.0.38 as well.

This text doesn’t talk specifically about odd-numbered kernel versions. General
users will never have a reason to run development kernels. Developers experi-
menting with new features, however, will want to be running the latest develop-
ment release. They will usually keep upgrading to the most recent version to pick
up bug fixes and new implementations of features. Note, however, that there’s no
guarantee on experimental kernels,* and nobody will help you if you have prob-
lems due to a bug in a noncurrent odd-numbered kernel. Those who run odd-
numbered versions of the kernel are usually skilled enough to dig in the code
without the need for a textbook, which is another reason why we don’t talk about
development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it is successfully being used with Alpha
and SPARC processors, 68000 and PowerPC platforms, as well as a few more. This
book is platform independent as far as possible, and all the code samples have
been tested on several platforms, such as the PC brands, Alpha, ARM, I1A-64, M68k,
PowerPC, SPARC, SPARC64, and VR41xx (MIPS). Because the code has been tested
on both 32-bit and 64-bit processors, it should compile and run on all other plat-
forms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a
commercial provider that grants its own warranty.

11

Chapter 1: An Introduction to Device Drivers

License Terms

Linux is licensed with the GNU General Public License (GPL), a document devised
for the GNU project by the Free Software Foundation. The GPL allows anybody to
redistribute, and even sell, a product covered by the GPL, as long as the recipient
is allowed to rebuild an exact copy of the binary files from source. Additionally,
any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will; at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-end-
ing discussion about the GPL and its use. If you want to read the license, you can
find it in several places in your system, including the directory /usr/src/linux, as a
file called COPYING.

Third-party and custom modules are not part of the Linux kernel, and thus you’re
not forced to license them under the GPL. A module uses the kernel through a
well-defined interface, but is not part of it, similar to the way user programs use
the kernel through system calls. Note that the exemption to GPL licensing applies
only to modules that use only the published module interface. Modules that dig
deeper into the kernel must adhere to the “derived work” terms of the GPL.

In brief, if your code goes in the kernel, you must use the GPL as soon as you
release the code. Although personal use of your changes doesn’t force the GPL on
you, if you distribute your code you must include the source code in the distribu-
tion—people acquiring your package must be allowed to rebuild the binary at
will. If you write a module, on the other hand, you are allowed to distribute it in
binary form. However, this is not always practical, as modules should in general
be recompiled for each kernel version that they will be linked with (as explained
in Chapter 2, in the section “Version Dependency,” and Chapter 11, in the section
“Version Control in Modules”). New kernel releases—even minor stable releases—
often break compiled modules, requiring a recompile. Linus Torvalds has stated
publicly that he has no problem with this behavior, and that binary modules
should be expected to work only with the kernel under which they were com-
piled. As a module writer, you will generally serve your users better by making
source available.

As far as this book is concerned, most of the code is freely redistributable, either
in source or binary form, and neither we nor O’Reilly & Associates retain any right
on any derived works. All the programs are available through FTP from
S://ftp.ora.com/pub/examples/linux/drivers/; and the exact license terms are stated
in the file LICENSE in the same directory.

12

Overview of the Book

When sample programs include parts of the kernel code, the GPL applies: the
comments accompanying source code are very clear about that. This only happens
for a pair of source files that are very minor to the topic of this book.

Joining the Kernel Development
Community

As you get into writing modules for the Linux kernel, you become part of a larger
community of developers. Within that community, you can find not only people
engaged in similar work, but also a group of highly committed engineers working
toward making Linux a better system. These people can be a source of help, of
ideas, and of critical review as well—they will be the first people you will likely
turn to when you are looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-kernel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this
list. Please note that the list is not for the faint of heart: traffic as of this writing can
run up to 200 messages per day or more. Nonetheless, following this list is essen-
tial for those who are interested in kernel development; it also can be a top-qual-
ity resource for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: htp://www.tux.org/lkml. Please read the rest of the FAQ while you
are at it; there is a great deal of useful information there. Linux kernel developers
are busy people, and they are much more inclined to help people who have
clearly done their homework first.

Overview of the Book

From here on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a
memory-based device driver that can be read and written for fun. Using memory
as the hardware base for the device allows anyone to run the sample code without
the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are introduced in
Chapter 4. Then, with our new debugging skills, we move to advanced features of
char drivers, such as blocking operations, the use of select, and the important ioct/
call; these topics are the subject of Chapter 5.

Before dealing with hardware management, we dissect a few more of the kernel’s
software interfaces: Chapter 6 shows how time is managed in the kernel, and
Chapter 7 explains memory allocation.

13

Chapter 1: An Introduction to Device Drivers

Next we focus on hardware. Chapter 8 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 9. Unfortunately, not everyone will be able to run the sample code for
these chapters, because some hardware support is actually needed to test the soft-
ware interface to interrupts. We've tried our best to keep required hardware sup-
port to a minimum, but you still need to put your hands on the soldering iron to
build your hardware “device.” The device is a single jumper wire that plugs into
the parallel port, so we hope this is not a problem.

Chapter 10 offers some additional suggestions about writing kernel software and
about portability issues.

In the second part of this book, we get more ambitious; thus, Chapter 11 starts
over with modularization issues, going deeper into the topic.

Chapter 12 then describes how block drivers are implemented, outlining the
aspects that differentiate them from char drivers. Following that, Chapter 13
explains what we left out from the previous treatment of memory management:
mmap and direct memory access (DMA). At this point, everything about char and
block drivers has been introduced.

The third main class of drivers is introduced next. Chapter 14 talks in some detail
about network interfaces and dissects the code of the sample network driver.

A few features of device drivers depend directly on the interface bus where the
peripheral fits, so Chapter 15 provides an overview of the main features of the bus
implementations most frequently found nowadays, with a special focus on PCI and
USB support offered in the kernel.

Finally, Chapter 16 is a tour of the kernel source: it is meant to be a starting point
for people who want to understand the overall design, but who may be scared by
the huge amount of source code that makes up Linux.

14

CHAPTER TWO

BUILDING AND
RUNNING MODULES

It's high time now to begin programming. This chapter introduces all the essential
concepts about modules and kernel programming. In these few pages, we build
and run a complete module. Developing such expertise is an essential foundation
for any kind of modularized driver. To avoid throwing in too many concepts at
once, this chapter talks only about modules, without referring to any specific
device class.

All the kernel items (functions, variables, header files, and macros) that are intro-
duced here are described in a reference section at the end of the chapter.

For the impatient reader, the following code is a complete “Hello, World” module
(which does nothing in particular). This code will compile and run under Linux
kernel versions 2.0 through 2.4.*

#define MODULE
#include <linux/module.h>

int init_module(void) { printk("<1l>Hello, world\n"); return 0; }
void cleanup_module(void) { printk("<l1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behaves similarly to the
standard C library function printf. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The module can call
printk because, after insmod has loaded it, the module is linked to the kernel and
can access the kernel’s public symbols (functions and variables, as detailed in the
next section). The string <1> is the priority of the message. We've specified a high
priority (low cardinal number) in this module because a message with the default
priority might not show on the console, depending on the kernel version you are

* This example, and all the others presented in this book, is available on the O'Reilly FTP
site, as explained in Chapter 1.

15

Chapter 2: Building and Running Modules

running, the version of the klogd daemon, and your configuration. You can ignore
this issue for now; we’ll explain it in the section “printk” in Chapter 4.

You can test the module by calling insmod and rmmod, as shown in the screen
dump in the following paragraph. Note that only the superuser can load and
unload a module.

The source file shown earlier can be loaded and unloaded as shown only if the
running kernel has module version support disabled; however, most distributions
preinstall versioned kernels (versioning is discussed in “Version Control in Mod-
ules” in Chapter 11). Although older modutils allowed loading nonversioned mod-
ules to versioned kernels, this is no longer possible. To solve the problem with
bello.c, the source in the misc-modules directory of the sample code includes a
few more lines to be able to run both under versioned and nonversioned kernels.
However, we strongly suggest you compile and run your own kernel (without ver-
sion support) before you run the sample code.”

root# gecc -c hello.c
root# insmod ./hello.o
Hello, world

root# rmmod hello
Goodbye cruel world
root#

According to the mechanism your system uses to deliver the message lines, your
output may be different. In particular, the previous screen dump was taken from a
text console; if you are running insmod and rmmod from an xterm, you won’t see
anything on your TTY. Instead, it may go to one of the system log files, such as
/var/log/messages (the name of the actual file varies between Linux distributions).
The mechanism used to deliver kernel messages is described in “How Messages
Get Logged” in Chapter 4.

As you can see, writing a module is not as difficult as you might expect. The hard
part is understanding your device and how to maximize performance. We'll go
deeper into modularization throughout this chapter and leave device-specific
issues to later chapters.

Kernel Modules Versus Applications

Before we go further, it's worth underlining the various differences between a ker-
nel module and an application.

Whereas an application performs a single task from beginning to end, a module
registers itself in order to serve future requests, and its “main” function terminates
immediately. In other words, the task of the function init_module (the module’s

*If you are new to building kernels, Alessandro has posted an article at
bttp.//www.linux.it/kerneldocs/kconf that should help you get started.

16

Kernel Modules Versus Applications

entry point) is to prepare for later invocation of the module’s functions; it’s as
though the module were saying, “Here I am, and this is what I can do.” The sec-
ond entry point of a module, cleanup_module, gets invoked just before the mod-
ule is unloaded. It should tell the kernel, “I'm not there anymore; don’t ask me to
do anything else.” The ability to unload a module is one of the features of modu-
larization that you’ll most appreciate, because it helps cut down development
time; you can test successive versions of your new driver without going through
the lengthy shutdown/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn’t
define: the linking stage resolves external references using the appropriate library
of functions. printfis one of those callable functions and is defined in /ibc. A mod-
ule, on the other hand, is linked only to the kernel, and the only functions it can
call are the ones exported by the kernel; there are no libraries to link to. The
printk function used in hello.c earlier, for example, is the version of printf defined
within the kernel and exported to modules. It behaves similarly to the original
function, with a few minor differences, the main one being lack of floating-point
support.”

Figure 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.

Because no library is linked to modules, source files should never include the
usual header files. Only functions that are actually part of the kernel itself may be
used in kernel modules. Anything related to the kernel is declared in headers
found in include/linux and include/asm inside the kernel sources (usually found
in /usr/src/linux). Older distributions (based on /ibc version 5 or earlier) used to
carry symbolic links from /usw/include/linux and /usr/include/asm to the actual
kernel sources, so your /ibc include tree could refer to the headers of the actual
kernel source you had installed. These symbolic links made it convenient for user-
space applications to include kernel header files, which they occasionally need to
do.

Even though user-space headers are now separate from kernel-space headers,
sometimes applications still include kernel headers, either before an old library is
used or before new information is needed that is not available in the user-space
headers. However, many of the declarations in the kernel header files are relevant
only to the kernel itself and should not be seen by user-space applications. These
declarations are therefore protected by #ifdef _ _KERNEL_ _ blocks. That's why
your driver, like other kernel code, will need to be compiled with the
_ _KERNEL_ _ preprocessor symbol defined.

The role of individual kernel headers will be introduced throughout the book as
each of them is needed.

* The implementation found in Linux 2.0 and 2.2 has no support for the L and Z qualifiers.
They have been introduced in 2.4, though.

17

Chapter 2: Building and Running Modules

Module Kernel Proper

insmod ===~~~ 4 | init_module() Jr======tereccmeen >| register_capability () I

VV capabilities[]

L [[[T

printk()

>
> I
>
>

cleanup_module () < unregister_capability ()

: One function EEmEN, Data Function call = Data pointer
| Multiple functions Function pointer === > Assignment fo data

Figure 2-1. Linking a module to the kernel

Developers working on any large software system (such as the kernel) must be
aware of and avoid namespace pollution. Namespace pollution is what happens
when there are many functions and global variables whose names aren’t meaning-
ful enough to be easily distinguished. The programmer who is forced to deal with
such an application expends much mental energy just to remember the “reserved”
names and to find unique names for new symbols. Namespace collisions can cre-
ate problems ranging from module loading failures to bizarre failures—which, per-
haps, only happen to a remote user of your code who builds a kernel with a
different set of configuration options.

Developers can’t afford to fall into such an error when writing kernel code
because even the smallest module will be linked to the whole kernel. The best
approach for preventing namespace pollution is to declare all your symbols as
static and to use a prefix that is unique within the kernel for the symbols you

18

Kernel Modules Versus Applications

leave global. Also note that you, as a module writer, can control the external visi-
bility of your symbols, as described in “The Kernel Symbol Table” later in this
chapter.*

Using the chosen prefix for private symbols within the module may be a good
practice as well, as it may simplify debugging. While testing your driver, you could
export all the symbols without polluting your namespace. Prefixes used in the ker-
nel are, by convention, all lowercase, and we’ll stick to the same convention.

The last difference between kernel programming and application programming is
in how each environment handles faults: whereas a segmentation fault is harmless
during application development and a debugger can always be used to trace the
error to the problem in the source code, a kernel fault is fatal at least for the cur-
rent process, if not for the whole system. We’ll see how to trace kernel errors in
Chapter 4, in the section “Debugging System Faults.”

User Space and Kernel Space

A module runs in the so-called kernel space, whereas applications run in user
space. This concept is at the base of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis-
tent view of the computer’s hardware. In addition, the operating system must
account for independent operation of programs and protection against unautho-
rized access to resources. This nontrivial task is only possible if the CPU enforces
protection of system software from the applications.

Every modern processor is able to enforce this behavior. The chosen approach is
to implement different operating modalities (or levels) in the CPU itself. The levels
have different roles, and some operations are disallowed at the lower levels; pro-
gram code can switch from one level to another only through a limited number of
gates. Unix systems are designed to take advantage of this hardware feature, using
two such levels. All current processors have at least two protection levels, and
some, like the x86 family, have more levels; when several levels exist, the highest
and lowest levels are used. Under Unix, the kernel executes in the highest level
(also called supervisor mode), where everything is allowed, whereas applications
execute in the lowest level (the so-called wuser mode), where the processor regu-
lates direct access to hardware and unauthorized access to memory.

We usually refer to the execution modes as kernel space and user space. These
terms encompass not only the different privilege levels inherent in the two modes,
but also the fact that each mode has its own memory mapping—its own address
space—as well.

* Most versions of insmod (but not all of them) export all non-static symbols if they find
no specific instruction in the module; that’'s why it's wise to declare as static all the
symbols you are not willing to export.

19

Chapter 2: Building and Running Modules

Unix transfers execution from user space to kernel space whenever an application
issues a system call or is suspended by a hardware interrupt. Kernel code execut-
ing a system call is working in the context of a process—it operates on behalf of
the calling process and is able to access data in the process’s address space. Code
that handles interrupts, on the other hand, is asynchronous with respect to pro-
cesses and is not related to any particular process.

The role of a module is to extend kernel functionality; modularized code runs in
kernel space. Usually a driver performs both the tasks outlined previously: some
functions in the module are executed as part of system calls, and some are in
charge of interrupt handling.

Concurrency in the Kernel

One way in which device driver programming differs greatly from (most) applica-
tion programming is the issue of concurrency. An application typically runs
sequentially, from the beginning to the end, without any need to worry about
what else might be happening to change its environment. Kernel code does not
run in such a simple world and must be written with the idea that many things can
be happening at once.

There are a few sources of concurrency in kernel programming. Naturally, Linux
systems run multiple processes, more than one of which can be trying to use your
driver at the same time. Most devices are capable of interrupting the processor;
interrupt handlers run asynchronously and can be invoked at the same time that
your driver is trying to do something else. Several software abstractions (such as
kernel timers, introduced in Chapter 6) run asynchronously as well. Moreover, of
course, Linux can run on symmetric multiprocessor (SMP) systems, with the result
that your driver could be executing concurrently on more than one CPU.

As a result, Linux kernel code, including driver code, must be reentrant—it must
be capable of running in more than one context at the same time. Data structures
must be carefully designed to keep multiple threads of execution separate, and the
code must take care to access shared data in ways that prevent corruption of the
data. Writing code that handles concurrency and avoids race conditions (situations
in which an unfortunate order of execution causes undesirable behavior) requires
thought and can be tricky. Every sample driver in this book has been written with
concurrency in mind, and we will explain the techniques we use as we come to
them.

A common mistake made by driver programmers is to assume that concurrency is
not a problem as long as a particular segment of code does not go to sleep (or
“block™. It is true that the Linux kernel is nonpreemptive; with the important
exception of servicing interrupts, it will not take the processor away from kernel

20

Kernel Modules Versus Applications

code that does not yield willingly. In past times, this nonpreemptive behavior was
enough to prevent unwanted concurrency most of the time. On SMP systems,
however, preemption is not required to cause concurrent execution.

If your code assumes that it will not be preempted, it will not run properly on
SMP systems. Even if you do not have such a system, others who run your code
may have one. In the future, it is also possible that the kernel will move to a pre-
emptive mode of operation, at which point even uniprocessor systems will have to
deal with concurrency everywhere (some variants of the kernel already implement
it). Thus, a prudent programmer will always program as if he or she were working
on an SMP system.

The Current Process

Although kernel modules don’t execute sequentially as applications do, most
actions performed by the kernel are related to a specific process. Kernel code can
know the current process driving it by accessing the global item current, a
pointer to struct task_struct, which as of version 2.4 of the kernel is
declared in <asm/current.h>, included by <linux/sched.h>. The current
pointer refers to the user process currently executing. During the execution of a
system call, such as open or read, the current process is the one that invoked the
call. Kernel code can use process-specific information by using current, if it
needs to do so. An example of this technique is presented in “Access Control on a
Device File,” in Chapter 5.

Actually, current is not properly a global variable any more, like it was in the
first Linux kernels. The developers optimized access to the structure describing the
current process by hiding it in the stack page. You can look at the details of cur-
rent in <asm/current.h>. While the code you’ll look at might seem hairy, we
must keep in mind that Linux is an SMP-compliant system, and a global variable
simply won’t work when you are dealing with multiple CPUs. The details of the
implementation remain hidden to other kernel subsystems though, and a device
driver can just include <linux/sched.h> and refer to the current process.

From a module’s point of view, current is just like the external reference printk.
A module can refer to current wherever it sees fit. For example, the following
statement prints the process ID and the command name of the current process by
accessing certain fields in struct task_struct:

printk ("The process is \"%s\" (pid %i)\n",
current->comm, current->pid);

The command name stored in current->commn is the base name of the program
file that is being executed by the current process.

21

Chapter 2: Building and Running Modules

Compiling and Loading

The rest of this chapter is devoted to writing a complete, though typeless, module.
That is, the module will not belong to any of the classes listed in “Classes of
Devices and Modules” in Chapter 1. The sample driver shown in this chapter is
called skull, short for Simple Kernel Utility for Loading Localities. You can reuse
the skull source to load your own local code to the kernel, after removing the
sample functionality it offers.”

Before we deal with the roles of init_module and cleanup_module, however, we’ll
write a makefile that builds object code that the kernel can load.

First, we need to define the _ _KERNEL_ _ symbol in the preprocessor before we
include any headers. As mentioned earlier, much of the kernel-specific content in
the kernel headers is unavailable without this symbol.

Another important symbol is MODULE, which must be defined before including
<linux/module.h> (except for drivers that are linked directly into the kerneD.
This book does not cover directly linked modules; thus, the MODULE symbol is
always defined in our examples.

If you are compiling for an SMP machine, you also need to define __SMP_ _
before including the kernel headers. In version 2.2, the “multiprocessor or unipro-
cessor” choice was promoted to a proper configuration item, so using these lines
as the very first lines of your modules will do the task:

#include <linux/config.h>
#ifdef CONFIG_SMP

define _ _SMP_
#endif

A module writer must also specify the —O flag to the compiler, because many func-
tions are declared as inline in the header files. gcc doesn’t expand inline func-
tions unless optimization is enabled, but it can accept both the —g and —O options,
allowing you to debug code that uses inline functions.t Because the kernel makes
extensive use of inline functions, it is important that they be expanded properly.

You may also need to check that the compiler you are running matches the kernel
you are compiling against, referring to the file Documentation/Changes in the ker-
nel source tree. The kernel and the compiler are developed at the same time,
though by different groups, so sometimes changes in one tool reveal bugs in the

* We use the word Jlocal here to denote personal changes to the system, in the good old
Unix tradition of /us#/local.

t Note, however, that using any optimization greater than —O2 is risky, because the com-
piler might inline functions that are not declared as inline in the source. This may be a
problem with kernel code, because some functions expect to find a standard stack layout
when they are called.

22

Compiling and Loading

other. Some distributions ship a version of the compiler that is too new to reliably
build the kernel. In this case, they will usually provide a separate package (often
called kgco) with a compiler intended for kernel compilation.

Finally, in order to prevent unpleasant errors, we suggest that you use the —Wall
(all warnings) compiler flag, and also that you fix all features in your code that
cause compiler warnings, even if this requires changing your usual programming
style. When writing kernel code, the preferred coding style is undoubtedly Linus’s
own style. Documentation/CodingStyle is amusing reading and a mandatory lesson
for anyone interested in kernel hacking.

All the definitions and flags we have introduced so far are best located within the
CFLAGS variable used by make.

In addition to a suitable CFLAGS, the makefile being built needs a rule for joining
different object files. The rule is needed only if the module is split into different
source files, but that is not uncommon with modules. The object files are joined
by the /d -r command, which is not really a linking operation, even though it uses
the linker. The output of /d -r is another object file, which incorporates all the
code from the input files. The —r option means “relocatable;” the output file is
relocatable in that it doesn’t yet embed absolute addresses.

The following makefile is a minimal example showing how to build a module
made up of two source files. If your module is made up of a single source file, just
skip the entry containing /d -r.

Change it here or specify it on the "make" command line
KERNELDIR = /usr/src/linux

include $ (KERNELDIR)/.config

CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \
-0 -Wall

ifdef CONFIG_SMP
CFLAGS += -D__SMP__ -DSMP
endif

all: skull.o

skull.o: skull_init.o skull_clean.o
$(LD) -r $° -o se

clean:
rm -f *.o0 *7 core

If you are not familiar with make, you may wonder why no .c file and no compila-
tion rule appear in the makefile shown. These declarations are unnecessary
because make is smart enough to turn .c into .o without being instructed to, using
the current (or default) choice for the compiler, $ (CC), and its flags, $ (CFLAGS) .

23

Chapter 2: Building and Running Modules

After the module is built, the next step is loading it into the kernel. As we’ve
already suggested, insmod does the job for you. The program is like /d, in that it
links any unresolved symbol in the module to the symbol table of the running ker-
nel. Unlike the linker, however, it doesn’t modify the disk file, but rather an in-
memory copy. insmod accepts a number of command-line options (for details, see
the manpage), and it can assign values to integer and string variables in your mod-
ule before linking it to the current kernel. Thus, if a module is correctly designed,
it can be configured at load time; load-time configuration gives the user more flex-
ibility than compile-time configuration, which is still used sometimes. Load-time
configuration is explained in “Automatic and Manual Configuration” later in this
chapter.

Interested readers may want to look at how the kernel supports insmod: it relies
on a few system calls defined in kernel/module.c. The function sys_create_module
allocates kernel memory to hold a module (this memory is allocated with vmalloc;
see “vmalloc and Friends” in Chapter 7). The system call get _kernel_syms returns
the kernel symbol table so that kernel references in the module can be resolved,
and sys_init_module copies the relocated object code to kernel space and calls the
module’s initialization function.

If you actually look in the kernel source, you'll find that the names of the system
calls are prefixed with sys_. This is true for all system calls and no other func-
tions; it'’s useful to keep this in mind when grepping for the system calls in the
sources.

Version Dependency

Bear in mind that your module’s code has to be recompiled for each version of
the kernel that it will be linked to. Each module defines a symbol called __mod-
ule_kernel_version, which insmod matches against the version number of
the current kernel. This symbol is placed in the .modinfo Executable Linking
and Format (ELF) section, as explained in detail in Chapter 11. Please note that
this description of the internals applies only to versions 2.2 and 2.4 of the kernel;
Linux 2.0 did the same job in a different way.

The compiler will define the symbol for you whenever you include
<linux/module.h> (that's why hello.c earlier didn’t need to declare it). This
also means that if your module is made up of multiple source files, you have to
include <linux/module.h> from only one of your source files (unless you use
_ _NO_VERSION which we’ll introduce in a while).

—

In case of version mismatch, you can still try to load a module against a different
kernel version by specifying the —f (“force”) switch to insmod, but this operation
isn’'t safe and can fail. It’s also difficult to tell in advance what will happen. Load-
ing can fail because of mismatching symbols, in which case you’ll get an error

24

Compiling and Loading

message, or it can fail because of an internal change in the kernel. If that happens,
you’ll get serious errors at runtime and possibly a system panic—a good reason to
be wary of version mismatches. Version mismatches can be handled more grace-
fully by using versioning in the kernel (a topic that is more advanced and is intro-
duced in “Version Control in Modules” in Chapter 11).

If you want to compile your module for a particular kernel version, you have to
include the specific header files for that kernel (for example, by declaring a differ-
ent KERNELDIR) in the makefile given previously. This situation is not uncommon
when playing with the kernel sources, as most of the time you’ll end up with sev-
eral versions of the source tree. All of the sample modules accompanying this
book use the KERNELDIR variable to point to the correct kernel sources; it can be
set in your environment or passed on the command line of make.

When asked to load a module, insmod follows its own search path to look for the
object file, looking in version-dependent directories under //ib/modules. Although
older versions of the program looked in the current directory, first, that behavior is
now disabled for security reasons (it’s the same problem of the PATH environment
variable). Thus, if you need to load a module from the current directory you
should use ./module.o, which works with all known versions of the tool.

Sometimes, you'll encounter kernel interfaces that behave differently between ver-
sions 2.0.x and 2.4.x of Linux. In this case you'll need to resort to the macros
defining the version number of the current source tree, which are defined in the
header <linux/version.h>. We will point out cases where interfaces have
changed as we come to them, either within the chapter or in a specific section
about version dependencies at the end, to avoid complicating a 2.4-specific discus-
sion.

The header, automatically included by /linux/module.h, defines the following
macros:

UTS_RELEASE
The macro expands to a string describing the version of this kernel tree. For
example, "2.3.48".

LINUX_VERSION_CODE
The macro expands to the binary representation of the kernel version, one
byte for each part of the version release number. For example, the code for
2.3.48 is 131888 (i.e., 0x020330).* With this information, you can (almost) eas-
ily determine what version of the kernel you are dealing with.

KERNEL_VERSION (major,minor, release)
This is the macro used to build a “kernel_version_code” from the individual
numbers that build up a version number. For example, KERNEL_VER-
SION(2,3,48) expands to 131888. This macro is very useful when you

* This allows up to 256 development versions between stable versions.

25

Chapter 2: Building and Running Modules

need to compare the current version and a known checkpoint. We'll use this
macro several times throughout the book.

The file version.b is included by module.h, so you won’t usually need to include
version.h explicitly. On the other hand, you can prevent module.h from including
version.h by declaring __NO_VERSION__ in advance. Youll use
__NO_VERSION__ if you need to include <linux/module.h> in several
source files that will be linked together to form a single module—for example, if
you need preprocessor macros declared in module.h. Declaring
_ _NO_VERSION_ _ before including module.h prevents automatic declaration of
the string __module_kernel_version or its equivalent in source files where
you don’t want it (/d -r would complain about the multiple definition of the sym-
bolD). Sample modules in this book use __NO_VERSION_ _ to this end.

Most dependencies based on the kernel version can be worked around with pre-
processor conditionals by exploiting KERNEL_VERSION and LINUX_VER-
SION_CODE. Version dependency should, however, not clutter driver code with
hairy #ifdef conditionals; the best way to deal with incompatibilities is by con-
fining them to a specific header file. That’'s why our sample code includes a sys-
dep.h header, used to hide all incompatibilities in suitable macro definitions.

The first version dependency we are going to face is in the definition of a “make
install” rule for our drivers. As you may expect, the installation directory,
which varies according to the kernel version being used, is chosen by looking in
version.h. The following fragment comes from the file Rules.make, which is
included by all makefiles:

VERSIONFILE = $(INCLUDEDIR)/linux/version.h
VERSION = $(shell awk -F\" ’/REL/ {print $$2}’ S$(VERSIONFILE))
INSTALLDIR = /lib/modules/$ (VERSION) /misc

We chose to install all of our drivers in the misc directory; this is both the right
choice for miscellaneous add-ons and a good way to avoid dealing with the
change in the directory structure under /lib/modules that was introduced right
before version 2.4 of the kernel was released. Even though the new directory
structure is more complicated, the misc directory is used by both old and new ver-
sions of the modutils package.

With the definition of INSTALLDIR just given, the install rule of each makefile,
then, is laid out like this:

install:

install -d $(INSTALLDIR)
install -c $(OBJS) $(INSTALLDIR)

26

The Kernel Symbol Table

Platform Dependency

Each computer platform has its peculiarities, and kernel designers are free to
exploit all the peculiarities to achieve better performance in the target object file.

Unlike application developers, who must link their code with precompiled
libraries and stick to conventions on parameter passing, kernel developers can
dedicate some processor registers to specific roles, and they have done so. More-
over, kernel code can be optimized for a specific processor in a CPU family to get
the best from the target platform: unlike applications that are often distributed in
binary format, a custom compilation of the kernel can be optimized for a specific
computer set.

Modularized code, in order to be interoperable with the kernel, needs to be com-
piled using the same options used in compiling the kernel (i.e., reserving the same
registers for special use and performing the same optimizations). For this reason,
our top-level Rules.make includes a platform-specific file that complements the
makefiles with extra definitions. All of those files are called Makefile.plat-
form and assign suitable values to make variables according to the current kernel
configuration.

Another interesting feature of this layout of makefiles is that cross compilation is
supported for the whole tree of sample files. Whenever you need to cross compile
for your target platform, you’ll need to replace all of your tools (gcc, Id, etc.) with
another set of tools (for example, m68k-linux-gcc, mo8k-linux-Id). The prefix to
be used is defined as $ (CROSS_COMPILE), either in the make command line or
in your environment.

The SPARC architecture is a special case that must be handled by the makefiles.
User-space programs running on the SPARC64 (SPARC V9) platform are the same
binaries you run on SPARC32 (SPARC V8). Therefore, the default compiler running
on SPARC64 (gco) generates SPARC32 object code. The kernel, on the other hand,
must run SPARC V9 object code, so a cross compiler is needed. All GNU/Linux dis-
tributions for SPARC64 include a suitable cross compiler, which the makefiles
select.

Although the complete list of version and platform dependencies is slightly more
complicated than shown here, the previous description and the set of makefiles
we provide is enough to get things going. The set of makefiles and the kernel
sources can be browsed if you are looking for more detailed information.

The Kernel Symbol Table

We've seen how insmod resolves undefined symbols against the table of public
kernel symbols. The table contains the addresses of global kernel items—

27

Chapter 2: Building and Running Modules

functions and variables—that are needed to implement modularized drivers. The
public symbol table can be read in text form from the file /proc/ksyms (assuming,
of course, that your kernel has support for the /proc filesystem—which it really
should).

When a module is loaded, any symbol exported by the module becomes part of
the kernel symbol table, and you can see it appear in /proc/ksyms or in the output
of the ksyms command.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main-
stream kernel sources as well: the msdos filesystem relies on symbols exported by
the fat module, and each input USB device module stacks on the wusbcore and
input modules.

Module stacking is useful in complex projects. If a new abstraction is implemented
in the form of a device driver, it might offer a plug for hardware-specific imple-
mentations. For example, the video-for-linux set of drivers is split into a generic
module that exports symbols used by lower-level device drivers for specific hard-
ware. According to your setup, you load the generic video module and the spe-
cific module for your installed hardware. Support for parallel ports and the wide
variety of attachable devices is handled in the same way, as is the USB kernel sub-
system. Stacking in the parallel port subsystem is shown in Figure 2-2; the arrows
show the communications between the modules (with some example functions
and data structures) and with the kernel programming interface.

Low-level
device
Port sharing operations | ..o oo 4 Kernel API
and device —
i i (Message
registration | parpore printing, driver
— i registration,
1p port allocation,
> etc.)

Figure 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modprobe utility.
modprobe functions in much the same way as insmod, but it also loads any other
modules that are required by the module you want to load. Thus, one modprobe
command can sometimes replace several invocations of insmod (although you’ll
still need insmod when loading your own modules from the current directory,
because modprobe only looks in the tree of installed modules).

28

Initialization and Shutdown

Layered modularization can help reduce development time by simplifying each
layer. This is similar to the separation between mechanism and policy that we dis-
cussed in Chapter 1.

In the usual case, a module implements its own functionality without the need to
export any symbols at all. You will need to export symbols, however, whenever
other modules may benefit from using them. You may also need to include spe-
cific instructions to avoid exporting all non-static symbols, as most versions
(but not alD) of modutils export all of them by default.

The Linux kernel header files provide a convenient way to manage the visibility of
your symbols, thus reducing namespace pollution and promoting proper informa-
tion hiding. The mechanism described in this section works with kernels 2.1.18
and later; the 2.0 kernel had a completely different mechanism, which is described
at the end of the chapter.

If your module exports no symbols at all, you might want to make that explicit by
placing a line with this macro call in your source file:

EXPORT_NO_SYMBOLS;

The macro expands to an assembler directive and may appear anywhere within
the module. Portable code, however, should place it within the module initializa-
tion function (init_module), because the version of this macro defined in sysdep.h
for older kernels will work only there.

If, on the other hand, you need to export a subset of symbols from your module,
the first step is defining the preprocessor macro EXPORT_SYMTAB. This macro
must be defined before including module.bh. 1t is common to define it at compile
time with the —D compiler flag in Makefile.

If EXPORT_SYMTAB is defined, individual symbols are exported with a couple of
macros:

EXPORT_SYMBOL (name) ;
EXPORT_SYMBOL_NOVERS (name) ;

Either version of the macro will make the given symbol available outside the mod-
ule; the second version (EXPORT_SYMBOL_NOVERS) exports the symbol with no
versioning information (described in Chapter 11). Symbols must be exported out-
side of any function because the macros expand to the declaration of a variable.
(Interested readers can look at <linux/module.h> for the details, even though
the details are not needed to make things work.)

Initialization and Shutdown

As already mentioned, init_module registers any facility offered by the module. By
Sfacility, we mean a new functionality, be it a whole driver or a new software
abstraction, that can be accessed by an application.

29

Chapter 2: Building and Running Modules

Modules can register many different types of facilities; for each facility, there is a
specific kernel function that accomplishes this registration. The arguments passed
to the kernel registration functions are usually a pointer to a data structure describ-
ing the new facility and the name of the facility being registered. The data struc-
ture usually embeds pointers to module functions, which is how functions in the
module body get called.

The items that can be registered exceed the list of device types mentioned in
Chapter 1. They include serial ports, miscellaneous devices, /proc files, executable
domains, and line disciplines. Many of those registrable items support functions
that aren’t directly related to hardware but remain in the “software abstractions”
field. Those items can be registered because they are integrated into the driver’s
functionality anyway (like /proc files and line disciplines for example).

There are other facilities that can be registered as add-ons for certain drivers, but
their use is so specific that it's not worth talking about them; they use the stacking
technique, as described earlier in “The Kernel Symbol Table.” If you want to probe
further, you can grep for EXPORT_SYMBOL in the kernel sources and find the
entry points offered by different drivers. Most registration functions are prefixed
with register_, so another possible way to find them is to grep for register_
in /proc/ksyms.

Error Handling in init_module

If any errors occur when you register utilities, you must undo any registration
activities performed before the failure. An error can happen, for example, if there
isn’t enough memory in the system to allocate a new data structure or because a
resource being requested is already being used by other drivers. Though unlikely,
it might happen, and good program code must be prepared to handle this event.

Linux doesn’t keep a per-module registry of facilities that have been registered, so
the module must back out of everything itself if init_module fails at some point. If
you ever fail to unregister what you obtained, the kernel is left in an unstable
state: you can't register your facilities again by reloading the module because they
will appear to be busy, and you can’t unregister them because you’d need the
same pointer you used to register and you’re not likely to be able to figure out the
address. Recovery from such situations is tricky, and you’ll be often forced to
reboot in order to be able to load a newer revision of your module.

Error recovery is sometimes best handled with the goto statement. We normally
hate to use goto, but in our opinion this is one situation (well, the only situation)
where it is useful. In the kernel, goto is often used as shown here to deal with
errors.

The following sample code (using fictitious registration and unregistration func-
tions) behaves correctly if initialization fails at any point.

30

Initialization and Shutdown

int init_module (void)
{

int err;

/* registration takes a pointer and a name */
err = register_this(ptrl, "skull");

if (err) goto fail_this;

err = register_that (ptr2, "skull");

if (err) goto fail_that;

err = register_those(ptr3, "skull");

if (err) goto fail_those;

return 0; /* success */

fail those: unregister_that (ptr2, "skull");
fail_that: unregister_this(ptrl, "skull");
fail_this: return err; /* propagate the error */

}

This code attempts to register three (fictitious) facilities. The goto statement is
used in case of failure to cause the unregistration of only the facilities that had
been successfully registered before things went bad.

Another option, requiring no hairy goto statements, is keeping track of what has
been successfully registered and calling cleanup_module in case of any error. The
cleanup function will only unroll the steps that have been successfully accom-
plished. This alternative, however, requires more code and more CPU time, so in
fast paths you’ll still resort to goto as the best error-recovery tool. The return
value of init_module, err, is an error code. In the Linux kernel, error codes are
negative numbers belonging to the set defined in <linux/errno.h>. If you
want to generate your own error codes instead of returning what you get from
other functions, you should include <linux/errno.h> in order to use symbolic
values such as -ENODEV, -ENOMEM, and so on. It is always good practice to
return appropriate error codes, because user programs can turn them to meaning-
ful strings using perror or similar means. (However, it's interesting to note that sev-
eral versions of modutils returned a “Device busy” message for any error returned
by init_module; the problem has only been fixed in recent releases.)

Obviously, cleanup_module must undo any registration performed by init_mod-
ule, and it is customary (but not mandatory) to unregister facilities in the reverse
order used to register them:

void cleanup_module (void)

{

unregister_those(ptr3, "skull");
unregister_that (ptr2, "skull");
unregister_this(ptrl, "skull");
return;

}

31

Chapter 2: Building and Running Modules

If your initialization and cleanup are more complex than dealing with a few items,
the goto approach may become difficult to manage, because all the cleanup code
must be repeated within init_module, with several labels intermixed. Sometimes,
therefore, a different layout of the code proves more successful.

What you’d do to minimize code duplication and keep everything streamlined is to
call cleanup_module from within init_module whenever an error occurs. The
cleanup function, then, must check the status of each item before undoing its reg-
istration. In its simplest form, the code looks like the following:

struct something *iteml;
struct somethingelse *item2;
int stuff_ok;

void cleanup_module (void)

{

if (iteml)

release_thing(iteml) ;

if (item2)
release_thing2 (item2) ;

if (stuff_ok)
unregister_stuff () ;
return;

}

int init_module (void)
{
int err = -ENOMEM;

iteml = allocate_thing(arguments) ;
item2 = allocate_thing2 (arguments2) ;
if (litem2 || !item2)

goto fail;
err = register_stuff(iteml, item2);
if (lerr)

stuff_ok = 1;
else

goto fail;
return 0; /* success */

fail:
cleanup_module() ;
return err;

}

As shown in this code, you may or may not need external flags to mark success of
the initialization step, depending on the semantics of the registration/allocation
function you call. Whether or not flags are needed, this kind of initialization scales
well to a large number of items and is often better than the technique shown
earlier.

32

Initialization and Shutdown

The Usage Count

The system keeps a usage count for every module in order to determine whether
the module can be safely removed. The system needs this information because a
module can’t be unloaded if it is busy: you can’t remove a filesystem type while
the filesystem is mounted, and you can’t drop a char device while a process is
using it, or you’'ll experience some sort of segmentation fault or kernel panic when
wild pointers get dereferenced.

In modern kernels, the system can automatically track the usage count for you,
using a mechanism that we will see in the next chapter. There are still times, how-
ever, when you will need to adjust the usage count manually. Code that must be
portable to older kernels must still use manual usage count maintenance as well.
To work with the usage count, use these three macros:

MOD_INC_USE_COUNT
Increments the count for the current module

MOD_DEC_USE_COUNT
Decrements the count

MOD_IN_USE
Evaluates to true if the count is not zero

The macros are defined in <linux/module.h>, and they act on internal data
structures that shouldn’t be accessed directly by the programmer. The internals of
module management changed a lot during 2.1 development and were completely
rewritten in 2.1.18, but the use of these macros did not change.

Note that there’s no need to check for MOD_IN_USE from within cleanup_module,
because the check is performed by the system call sys_delete_module (defined in
kernel/module.c) in advance.

Proper management of the module usage count is critical for system stability.
Remember that the kernel can decide to try to unload your module at absolutely
any time. A common module programming error is to start a series of operations
(in response, say, to an open request) and increment the usage count at the end. If
the kernel unloads the module halfway through those operations, chaos is
ensured. To avoid this kind of problem, you should call MOD_INC_USE_COUNT
before doing almost anything else in a module.

You won’t be able to unload a module if you lose track of the usage count. This
situation may very well happen during development, so you should keep it in
mind. For example, if a process gets destroyed because your driver dereferenced a
NULL pointer, the driver won’t be able to close the device, and the usage count
won't fall back to zero. One possible solution is to completely disable the usage
count during the debugging cycle by redefining both MOD_INC_USE_COUNT and

33

Chapter 2: Building and Running Modules

MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method
to force the counter to zero (you'll see this done in the section “Using the ioctl
Argument” in Chapter 5). Sanity checks should never be circumvented in a pro-
duction module. For debugging, however, sometimes a brute-force attitude helps
save development time and is therefore acceptable.

The current value of the usage count is found in the third field of each entry in
/proc/modules. This file shows the modules currently loaded in the system, with
one entry for each module. The fields are the n