

Beginning Unix®

Paul Love, Joe Merlino, Craig Zimmerman,
Jeremy C. Reed, and Paul Weinstein

01_579940 ffirs.qxd 3/21/05 5:57 PM Page iii

Beginning Unix®

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN 13: 978-0-7645-7994-3

ISBN 10: 0-7645-7994-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/RR/QU/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreview@wiley.com.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies con-
tained herein may not be suitable for every situation. This work is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data: Available from publisher

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affil-
iates, in the United States and other countries, and may not be used without written permission. Unix
is a registered trademark of Unix System Laboratories, Inc. All other trademarks are the property of
their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor men-
tioned in this book.

01_579940 ffirs.qxd 3/21/05 5:57 PM Page iv

About the Authors
Paul Love (Cincinnati, OH), CISSP, CISA, CISM, Security+, has been in the IT field for 15 years. Paul
holds a Masters of Science degree in Network Security and a Bachelor’s in Information Systems. He has
co-authored two Linux security books, contributed to multiple Linux/Unix books, and has been the
technical editor for over 10 best selling Linux and Unix books. Paul also ran a successful Linux portal
site during the dot com era and has been an avid Unix/Linux user and administrator both professionally
and as a hobby for many years.

Joe Merlino (Boston, MA) is an experienced system administrator with Unix and Linux for more than a
decade.

Craig Zimmerman (New York, NY) manages UNIX, Macintosh, and Windows systems for Spontaneous,
a post-production company in New York City. He previously worked at Chiat/Day helping build the
world’s most famous virtual advertising agency, managing and networking Unix and Macintosh sys-
tems in multiple offices.

Jeremy C. Reed (Marysville, WA) is a programmer, a member of NetBSD, and has actively taught
FreeBSD, NetBSD, and OpenBSD administration classes for the past three years.

Paul Weinstein (Chicago, IL) has worked on various Unix-based computing platforms, from the main-
frame (Harris HCX-9) to the desktop (Powerbook G4) and has developed applications on just about all
of the current major branches of Unix in the course of the past 10 years. Recently he has been focusing
a lot of his attention on developing and integrating Web-based systems using tools such as Linux,
Apache, MySQL, and Perl, and in doing so has brought his unique understanding to a wide range of
computing environments ranging from public elementary schools to pioneering open source companies.
Currently, Paul works as President and Chief Consultant for the computer consulting firm Kepler
Solutions, Inc.

David Mercer (Cape Town, South Africa) is a long-time Unix user and PHP programmer who con-
tributed to Beginning PHP4 and Beginning PHP5. He has maintained a keen interest in all things open
source ever since he managed to put together a working Beowulf cluster by nicking old computer parts
from colleagues and assembling them under his desk.

01_579940 ffirs.qxd 3/21/05 5:57 PM Page v

Credits
Acquisitions Editor
Debra Williams

Development Editor
Maryann Steinhart

Production Editor
Felicia Robinson

Technical Editors
Robert Berg
John Kennedy
David Mercer
David Bruce

Copy Editor
Publication Services

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
April Farling
Carrie A. Foster
Lauren Goddard
Denny Hager
Lynsey Osborn

Quality Control Technicians
Amanda Briggs
Brian H. Walls

Proofreading and Indexing
TECHBOOKS Production Services

01_579940 ffirs.qxd 3/21/05 5:57 PM Page vii

Contents

Acknowledgements xix

Introduction xxi

Who Is This Book For? xxi
What Does This Book Cover? xxii
How This Book Is Structured xxii
What Do You Need to Use This Book? xxv
Conventions xxv
Source Code xxv
Errata xxv

Chapter 1: Unix Fundamentals 1

Brief History 1
Unix Versions 2
Operating System Components 3

Unix Kernel 4
Shells 5
The Other Components 5

Summary 8

Chapter 2: First Steps 9

System Startup 9
Logging In and Out of Unix 13

Logging In via GUI 14
Logging In at the Command Line 17
Remotely Logging In 20
The Shell 24
Logging Out 24

System Shutdown 24
Getting Help with Man Pages 25
Summary 28

02_579940 ftoc.qxd 3/21/05 5:56 PM Page ix

x

Contents

Chapter 3: Understanding Users and Groups 29

Account Basics 29
Root Account 29
System Accounts 30
User Accounts 30
Group Accounts 30

Managing Users and Groups 31
/etc/passwd 31
/etc/shadow 34
/etc/group 37
Mac OS X Differences 39

Managing Accounts and Groups 40
Account Management 41
Group Management 43
User Management with Graphical User Interface Tools 44

Becoming Another User 46
User- and Group-Related Commands 47
Summary 50
Exercises 50

Chapter 4: File System Concepts 53

File System Basics 53
Directory Structure 54
Root’s Basic Directories 55

Paths and Case 56
Navigating the File System 57

pwd 58
cd 58
which and whereis 59
find 60
file 60
ls 61

File Types 63
Links 63
File and Directory Permissions 68
Changing Permissions 69

Using chmod in Symbolic Mode 69
Using chmod with Absolute Permissions 70

Viewing Files 71

02_579940 ftoc.qxd 3/21/05 5:56 PM Page x

xi

Contents

Creating, Modifying, and Removing Files 72
Deleting Files 73
Making and Removing Directories 74

Basic File System Management 74
Making File Systems Accessible 77
Summary 79
Exercise 80

Chapter 5: Customize Your Working Environment 81

Environment Variables 81
The PS1 Variable 81
Other Environment Variables 83

Understanding the Path 83
The PATH Environment Variable 84
Relative and Absolute Paths 85
Moving around the File System 86

Choosing a Shell 86
Changing a Shell Temporarily 87
Changing the Default Shell 87
Which Shell? 88

Configuring Your Shell 93
Run Control Files 93
Environment Variables 98
Aliases 101
Options 101

Dynamic Shared Library Paths 102
LD_LIBRARY_PATH 103
LD_DEBUG 103

Summary 104
Exercises 104

Chapter 6: Unix Commands In-Depth 105

Anatomy of a Command 106
Finding Information about Commands 108

man 109
info 109
apropos 110

Command Modification 111
Metacharacters 111
Input and Output Redirection 112

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xi

xii

Contents

Pipes 114
Command Substitution 114

Working with Files and Directories 115
ls 115
cd 116

Common File Manipulation Commands 116
cat 116
more/less 117
mv 117
cp 118
rm 118
touch 118
wc 118

File Ownership and Permissions 119
File Ownership 119
File Permissions 120
umask 121
Executable Files 122

Maintaining File System Quotas 122
Summary 124
Exercise 124

Chapter 7: Editing Files with Vi 125

Using Vi 126
Moving within a File 128
Searching Files 133
Exiting and Saving a File 133
Editing Files 134

Deleting Characters 136
Change Commands 137
Advanced Commands 139

Help! 141
Running Commands 143
Replacing Text 143

Versions of Vi 146
Summary 147
Exercises 147

Chapter 8: Advanced Tools 149

Regular Expressions and Metacharacters 149
Understanding Metacharacters 150
Regular Expressions 154

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xii

xiii

Contents

Using SFTP and FTP 155
More Advanced Commands 160

grep 160
find 161
sort 163
tee 165
script 165
wc 165

Summary 166
Exercises 166

Chapter 9: Advanced Unix Commands: Sed and AWK 167

Sed 168
Using the -e Option 169
Sed Files 170
Sed Commands 171

AWK 173
Extracting with AWK 174
Working with Patterns 175

Programming with AWK 176
Summary 178
Exercises 179

Chapter 10: Job Control and Process Management 181

What Is a Process? 181
Shell Scripts 182
What Processes Are Running? 183

ps Syntax 184
Process States 185

System Processes 185
Process Attributes 188
Stopping Processes 189

The Process Tree 191
Zombie Processes 192

The top Command 192
The /proc File System 194
SETUID and SETGID 195
Shell Job Control 196
Summary 198

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xiii

xiv

Contents

Chapter 11: Running Programs at Specified Times 199

System Clock 199
Checking and Setting the System Clock with Date 200
Syncing Clocks on Linux with hwclock 201
Syncing the System Clock with NTP 201

Scheduling Commands to Run in the Future 202
Routine Execution with Cron 202
One-Time Execution with at 209

Summary 211
Exercise 211

Chapter 12: Security 213

The Basics of Good Security 213
Assets Worth Protecting 214
Potential Issues 214

Securing Your Unix System 215
Password Security 216
Password Discovery Programs 216

Limiting Administrative Access 217
UID 0 217
Root Management Options 218
Setting up Sudo 218

System Administration Preventive Tasks 221
Remove Unneeded Accounts 221
Patch, Restrict, or Remove Programs 222
Disable Unneeded Services 223
Monitor and Restrict Access to Services 223
Implement Built-in Firewalls 224
Other Security Programs 224

Summary 225
Exercise 225

Chapter 13: Basic Shell Scripting 227

Commenting and Documenting Scripts 227
Getting Down to It 229

Invoking the Shell 230
Variables 231
Reading Input from the Keyboard 232
Special Variables 232
Exit Status 232

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xiv

xv

Contents

Flow Control 233
Conditional Flow Control 233
Iterative Flow Control 239

Choosing a Shell for Scripting 240
Summary 241
Exercises 241

Chapter 14: Advanced Shell Scripting 243

Advanced Scripting Concepts 243
Input and Output Redirection 244
Command Substitution: Back Ticks and Brace Expansion 246
Using Environment and Shell Variables 246

Shell Functions 247
Returning Values 249
Nested Functions and Recursion 249
Scope 250
Function Libraries 252
getopts 253
Signals and Traps 254
File Handling 255
Arrays 257

Shell Security 260
Where Can Attacks Come From? 260
Taking Precautions 261
Restricted Shells 261

System Administration 263
Gathering Information 264
Performing Tasks 265
Debugging Scripts 265

Summary 267
Exercises 267

Chapter 15: System Logging 269

Log Files 269
Introducing Syslogd 270

Understanding the syslog.conf File 271
What’s the Message? 274
The Logger Utility 275

Rotating Logs 275

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xv

xvi

Contents

Monitoring System Logs 276
Logwatch 277
Swatch 279

Summary 281
Exercises 281

Chapter 16: Unix Networking 283

TCP/IP 283
Introducing TCP 283
Introducing IP 284
Other Protocols Used with TCP/IP 284
Network Address, Subnetworks, Netmasks, and Routing with TCP/IP 286

Setting Up a Unix System for a TCP/IP Network 290
Configuring for a TCP/IP Network Request 290
A Dynamic Setup 291
Sending a TCP/IP Network Request 293
Answering a TCP/IP Network Request 295
inetd 296

Network Management Tools 297
Tracking the Performance of a Network with Traceroute 298
Firewalls 300
Routinely Checking Network Latency 300

Summary 302
Exercise 302

Chapter 17: Perl Programming for Unix Automation 303

Perl’s Advantages 305
Useful Perl Commands 305

Variables 306
Operators 306
Basic Functions 307

More Perl Code Examples 313
Troubleshooting Perl Scripts 317
Summary 320
Exercises 320

Chapter 18: Backup Tools 321

Backup Basics 321
Determining What to Back Up 322
Backup Media Types 323

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xvi

xvii

Contents

Backup Types 323
When to Run Backups 324
Verify Backups 325
Storing Backups 325

Backup Commands 326
Using tar 326
Compressing with gzip and bzip2 329
cpio 333
dump, backup, and restore 335
Other Backup Commands 340

Backup Suites 341
Summary 341
Exercise 341

Chapter 19: Installing Software from Source Code 343

Understanding Source Code 343
Open Source Licensing 344

BSD Licenses 344
GNU Public License 345

Finding and Downloading Unix Software 346
Choosing Your Software 346
Downloading Files 346
Verify the Source Code 348

Building and Installing 350
Extracting the Files 351
Beginning the Build 352

Introducing make, Makefiles, and make Targets 359
The Makefile 360
Tools to Help Create Makefiles 362
GNU Compilation Tools 363
diff and patch 364

Installation Techniques for Better Maintenance 365
Troubleshooting Build Problems 367
Precompiled Software Packages 367
Summary 369
Exercises 370

Chapter 20: Conversion: Unix for Mac OS Users 371

A Very Brief History of Mac OS X 371
Differences between Mac OS 9 and Mac OS X 372

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xvii

xviii

Contents

Folders Are Directories Too 373
Required Folders 374
Home Directory 376
Administration 378
Preference Files 379

Unix and Mac OS X/Mac OS 9 Command and GUI Equivalents 379
Differences between Mac OS X and Other Unix Systems 382

Directory Services and NetInfo 382
Using nidump and niload 384
Backup and Restoration of the NetInfo Database 385
System Startup 385
File Structure Differences 386
Root User Account 387

Summary 388
Exercises 388

Chapter 21: Conversion: Unix for Windows Users 389

Structural Comparison 389
Major Administrative Tools Comparisons 394
Popular Programs Comparison 395
Using Unix within Windows 397
Using Windows within Unix 409
Summary 410

Appendix A: Answers 411

Appendix B: Useful Unix Web Sites 421

Index 425

02_579940 ftoc.qxd 3/21/05 5:56 PM Page xviii

Acknowledgments

I would like to thank my family and those who mentored me throughout my career.

I would like to thank the staff at Wiley, particularly Debra Williams Cauley, who helped get this book
started and whose participation during the writing of this book was instrumental in its completion. I
would also like to thank Maryann and the technical editors whose tough first reviews and great insight
helped develop the book into a far greater work. All others at the Wrox team who helped make this book
a better product through their input or editing are greatly appreciated.

Finally, I would like to thank all the developers of the Unix systems and their derivatives. Their tireless
pursuit of excellence has given us one of the most elegant and stable operating systems available today.

—Paul Love

03_579940 flast.qxd 3/21/05 5:56 PM Page xix

03_579940 flast.qxd 3/21/05 5:56 PM Page xx

Introduction

The new millennium has seen many changes in many areas of computing, from new forms of storage
with massive amounts of storage space, to systems that are far more powerful than the first computer
users could have ever imagined. Designed and initially created more than 30 years ago, the Unix operat-
ing system has been part of the evolution of computers, so it’s no accident that Unix is still one of the
most popular operating systems for mission-critical tasks.

Unix is the basis for some of the most-used operating systems today, from Apple’s Mac OS X to Linux to
the more commonly known Unix versions, such as Sun’s Solaris Unix and IBM’s AIX. Today many of the
versions of Unix are available free to users and corporations, allowing for a larger use base than many
had imagined when Unix was first being developed. Unix is now seen as a user-friendly, very secure,
and robust operating system rather than the cold, command line–only operating system once thought to
be useful only to computer experts.

Beginning Unix covers all basic aspects of the Unix operating system. What is unique about this book is
that it covers not only the standard Unix systems, such as Sun’s Solaris and IBM’s AIX, but also Unix
derivatives, such as Apple’s Mac OS X and the various Linuxes. Additionally, this book includes a
unique conversion section explaining how to convert Mac OS X–specific or Windows operating systems
commands that you may already know into their Unix equivalents, making the transition from other
operating systems much easier.

This book also includes a CD-ROM with the KNOPPIX operating system. This fully functional version of
Linux enables you to restart your computer into a Linux environment. KNOPPIX requires no technical
experience, and it will not damage or modify your current operating system. Using KNOPPIX is an easy
way for you to follow along with the book, learning Unix without the consequences of having to lose
any data or operating systems on your computer.

Who Is This Book For?
This book is for anyone who is interested in understanding the concepts and operation of the Unix oper-
ating system, including any of the Unix derivatives available today (Apple OS X, Linux, or BSD, for
example). It is designed for absolute beginners to the Unix operating system, including those who have
only worked with the many graphical user interfaces available for the different Unix systems (Apple’s
Aqua interface, KDE, GNOME, and so forth). This book can also be useful for veteran Unix users,
because no one knows everything about Unix, as a refresher on known concepts or as a tool to fill gaps
in some knowledge areas.

No assumptions are made about the reader’s skill level or prior use of computers. If you have used com-
puters and other operating systems such as Mac OS X or Microsoft Windows, you will understand some
of the concepts faster, but all readers will gain some insight from this book, regardless of their present
expertise.

03_579940 flast.qxd 3/21/05 5:56 PM Page xxi

xxii

Introduction

What Does This Book Cover?
This book covers all versions of Unix in their most basic form, as well as commands and concepts com-
mon to all versions of Unix and its derivatives, including:

❑ Apple’s Mac OS X

❑ Red Hat Linux

❑ Mandrakelinux

❑ IBM’s AIX

❑ Any version of Linux

❑ Any version of BSD (FreeBSD, OpenBSD, NetBSD)

Special emphasis is placed on Sun’s Solaris, Mac OS X, and Linux because they are the most popular
available. The different versions of Unix utilize the same principles and commands with small differ-
ences, so any version of Unix can be used with this book.

This book also covers basic programming, including shell scripting and Perl programming, which
enable you to automate your system as much as possible—one of the strengths of the Unix operating
system. The coverage of these programming concepts creates a firm foundation for more advanced
programming covered by other books.

How This Book Is Structured
This book presents basic concepts of the Unix operating system first, progressing to more advanced top-
ics and programming later in the book. If you are familiar with the concepts or commands covered in
one chapter, you can simply skip to one that has information you need to learn.

Chapters 1 through 4 provide the fundamental information you need to understand Unix methodology,
how Unix is designed, and the basics of logging in to and out of a Unix system.

❑ Chapter 1: Unix Fundamentals. The basics of Unix, including the history and terminology as
well as some of the core concepts of Unix design and philosophy. This chapter helps you under-
stand some of the culture behind the Unix operating system.

❑ Chapter 2: First Steps. This chapter describes the very first steps you must take to utilize the
Unix operating system effectively, including what occurs during the Unix boot process, how to
log in, and how the user environment (shell) is structured, as well as how to shut down a Unix
system properly.

❑ Chapter 3: Understanding Users and Groups. Learning how users and groups work within the
system is crucial to understanding how you can effectively use your system. This chapter covers
all aspects of user accounts and groups, including how to add, modify, and delete user accounts
and how to become another user with the su command.

❑ Chapter 4: File System Concepts. The Unix file system is one of the most critical components of
the Unix system as a whole. The file system allows you to store and manipulate your files. This

03_579940 flast.qxd 3/21/05 5:56 PM Page xxii

xxiii

Introduction

chapter shows you what the Unix file system is and how to use it from a user and system
administrator point of view. You will learn how to utilize the file system effectively, so that you
can prevent some of the common problems associated with file system management.

Chapters 5–7 put you to work, from customizing your working environment to editing files on Unix.
These chapters extend your repertoire of Unix commands.

❑ Chapter 5: Customize Your Working Environment. The shell is the primary environment that
you use for day-to-day work in Unix. Unix offers a multitude of ways to customize your work-
ing environment to suit your needs and whims. This chapter goes over the many different con-
figuration options available for users in many of the different Unix shells.

❑ Chapter 6: Unix Commands In-Depth. Unix has hundreds of different commands that do many
tasks. This chapter provides a foundation for some of the most commonly used commands you
will need to understand in order to use the system effectively for day-to-day work.

❑ Chapter 7: Editing Files with Vi. The vi editor is one of the oldest and most widely used text
editors in Unix. It is commonly seen as a monolithic and difficult-to-use editor, but as you will
learn, it is a very powerful and fast way to edit files. This chapter explores all aspects of using
the vi editor to create and edit files effectively.

With a good foundation in place, you’re ready to move on to more-advanced topics. Chapters 8–11 dis-
cuss how to use some powerful Unix tools, how to manage processes, and how to schedule programs to
run at specific times. Chapter 12 takes on the important subject of security.

❑ Chapter 8: Advanced Tools. This chapter introduces the concept of regular expressions and cov-
ers some of the more advanced tools available to the Unix user.

❑ Chapter 9: Advanced Unix Commands: Sed and AWK. sed and awk are two very powerful
tools that enable a user to manipulate files in an efficient manner. These commands are essen-
tial, and you will find yourself using them frequently. This chapter goes from the ground up in
showing you how to use these commands.

❑ Chapter 10: Job Control and Process Management. This chapter covers the basics of Unix pro-
cesses and how to control and manage these crucial components of the Unix operating system.
As an extension of processes, job control is reviewed and explained.

❑ Chapter 11: Running Programs at Specified Times. Running programs at specified times with-
out user or administrator intervention provides a user or administrator with the capability to
run programs with minimal system impact when the fewest users are utilizing the system. This
chapter covers how to run commands at different times and discusses the environmental vari-
ables that affect this process.

❑ Chapter 12: Security. Unix has had security features ingrained for many years, but as with any
operating system, it can be made more secure from malicious entities on the outside or inside.
This chapter goes over the basics of system security and then covers some of the fundamental
steps you can take to make your system more secure.

Chapters 13–17 delve into shell scripting and other methods of “automating” common tasks in Unix sys-
tems. Although these tasks often fall within the purview of system administrators, other users, including
home users, may benefit.

03_579940 flast.qxd 3/21/05 5:56 PM Page xxiii

xxiv

Introduction

❑ Chapter 13: Basic Shell Scripting. Shell scripting is the gateway to more advanced program-
ming languages for many users. This chapter delves into the basics of programming with the
major Unix shells, making the transition from user to beginning programmer easier.

❑ Chapter 14: Advanced Shell Scripting. This chapter takes Chapter 13 one step further, moving
you into more advanced programming topics and leaving you with the capability to program
shell scripts for any task.

❑ Chapter 15: System Logging. The importance of logging to users, administrators, and program-
mers cannot be overstated. Logging is the outlet for the system to communicate with the user,
on everything from problems to successful system actions.

❑ Chapter 16: Unix Networking. This chapter covers all aspects of communicating with other sys-
tems, including network administration and scripting on common network tasks.

❑ Chapter 17: Perl Programming for Unix Automation. Perl is one of the most common program-
ming languages on Unix, as well as on other operating systems. Perl enables you to quickly
write concise, useful programs. This chapter goes over the basics of programming in the Perl
language and tells you how to automate common Unix tasks with Perl.

Chapters 18 and 19 cover two important topics: backing up your data and installing Unix programs.

❑ Chapter 18: Backup Tools. This chapter describes some of the tools available on your Unix sys-
tem for backing up and restoring your system in the event of accidental deletion or major sys-
tem failure or catastrophe.

❑ Chapter 19: Installing Software from Source Code. Although Unix includes many programs in
a default installation, there are often many other programs you will want to install. This chapter
shows you how to install software from source code and from precompiled binaries.

Chapters 20 and 21 provide maps to Unix operating systems for those who are more familiar with
Microsoft Windows, Microsoft DOS, Mac OS 9, and Mac OS X. These chapters are great references for
those who have used other operating systems and want to compare Unix to what they already know.

❑ Chapter 20: Conversion: Unix for Mac OS Users. Mac OS X is built on a Unix foundation, but
there are some minor differences between standard Unix and Apple’s Mac OS X. This chapter
converts typical Mac OS (X, 9, and below) commands and concepts into their equivalent Unix
commands or concepts. This chapter makes the migration into Unix much easier for users of
any version of Apple’s operating systems.

❑ Chapter 21: Conversion: Unix for Windows Users. Microsoft Windows is the predominant
operating system available today. This chapter converts the most common Windows and MS-
DOS commands into their equivalent Unix commands, making the migration from those operat-
ing systems to Unix much simpler.

The book concludes with two appendixes. Appendix A, “Answers,” provides the solutions to the exer-
cise(s) at the end of most chapters. These exercises will enable you to test your grasp of the concepts pre-
sented in the chapter. Appendix B, “Useful Unix Web Sites,” provides links to some of the best
Unix-related Web sites on the Internet.

03_579940 flast.qxd 3/21/05 5:56 PM Page xxiv

xxv

Introduction

What Do You Need to Use This Book?
There are no requirements to use this book, but to make the learning process easier, the KNOPPIX distri-
bution of Linux is provided on the CD-ROM accompanying this book. This enables you to use a Unix-
based operating system any time, with no commitment of hard-drive resources or system alterations.
The KNOPPIX distribution runs completely from CD-ROM and can be run at any time. If you have a
Mac OS X system, you are already using a Unix operating system. The CD-ROM version of KNOPPIX
runs only on Intel- or AMD-based systems; it will not work on Apple’s line of hardware.

Conventions
This book uses the conventions discussed in this section to make the importance of specific information
stand out.

Interesting tidbits or tips are formatted in italics, like this.

Code or commands are in this monotype format.

The text also uses specific styles to denote their significance:

❑ Keyboard commands that use function keys are denoted like: Shift+Q

❑ Web URLs are noted like this: persistence.properties.

Any actual Tab characters in code are represented by a right arrow: →.

Source Code
The source code for all the code in this book is available online if you prefer to cut and paste rather than
copy by hand from the book. It is available at www.wrox.com. At the Wrox Web site, you can find the
book’s source code by searching for the book title (Beginning Unix) or ISBN (0-7645-7994-0).

Errata
This book has been checked for technical and grammatical errors, but as is human nature, errors can occur.
The errata page for this book is available at www.wrox.com, in the book details section. If you find an error
in the book that is not listed, the authors would greatly appreciate it if you go to www.wrox.com/contact/
techsupport.shtml and complete the form to submit the error. By submitting any errors you discover,
you help us to make this book even better.

Important notes or concepts appear in this format.

03_579940 flast.qxd 3/21/05 5:56 PM Page xxv

03_579940 flast.qxd 3/21/05 5:56 PM Page xxvi

1
Unix Fundamentals

The Unix operating system was created more than 30 years ago by a group of researchers at
AT&T’s Bell Laboratories. During the three decades of constant development that have followed,
Unix has found a home in many places, from the ubiquitous mainframe to home computers to the
smallest of embedded devices. This chapter provides a brief overview of the history of Unix, dis-
cusses some of the differences among the many Unix systems in use today, and covers the funda-
mental concepts of the basic Unix operating system.

Brief History
In terms of computers, Unix has a long history. Unix was developed at AT&T’s Bell Laboratories
after Bell Labs withdrew from a long-term collaboration with General Electric (G.E.) and MIT to
create an operating system called MULTICS (Multiplexed Operating and Computing System) for
G.E.’s mainframe. In 1969, Bell Labs researchers created the first version of Unix (then called
UNICS, or Uniplexed Operating and Computing System), which has evolved into the common
Unix systems of today.

Unix was gradually ported to different machine architectures from the original PDP-7 minicomputer
and was used by universities. The source code was made available at a small fee to encourage its
further adoption. As Unix gained acceptance by universities, students who used it began graduat-
ing and moving into positions where they were responsible for purchasing systems and software.
When those people began purchasing systems for their companies, they considered Unix because
they were familiar with it, spreading adoption further. Since the first days of Unix, the operating
system has grown significantly, so that it now forms the backbone of many major corporations’
computer systems.

Unix no longer is an acronym for anything, but it is derived from the UNICS acronym. Unix
developers and users use a lot of acronyms to identify things in the system and for commands.

04_579940 ch01.qxd 3/21/05 5:55 PM Page 1

Unix Versions
In the early days Unix was made available as source code rather than in the typical binary form. This
made it easier for others to modify the code to meet their needs, and it resulted in forks in the code,
meaning that there are now many disparate versions (also known as flavors).

Source code represents the internal workings of a program, specifying line by line how a program or
application operates. Access to source code makes it easier to understand what is occurring in the pro-
gram and allows for easier modification of the program. Most commercial programs are distributed in
binary form, meaning they are ready to be run, but the internal lines of code are not readable by people.

There are primarily two base versions of Unix available: AT&T System V and Berkley Software
Distribution (BSD). The vast majority of all Unix flavors are built on one of these two versions. The pri-
mary differences between the two are the utilities available and the implementations of the file structure.
Most of the Unix flavors incorporate features from each base version; some include the System V version
utilities in /usr/bin and the BSD version in /usr/ucb/bin, for example, so that you have the choice
of using a utility with which you are comfortable. This arrangement is indicative of the Unix way of
providing the flexibility to do things in different ways.

The various versions of Unix systems provide the user the power of choice: you can select the flavor that
best matches your needs or system requirements. This ability to choose is considered by many as a
strength, although some see it as a weakness in that these slightly differing versions and flavors create
some incompatibilities (in the implementation, commands, communications, or methods, for example).
There is no “true” version of Unix or one that is more official than others; there are just different imple-
mentations. Linux, for example, is a variant of Unix that was built from the ground up as a free Unix-like
alternative to the expensive commercial Unix versions available when Linux was first created in 1991.
Here are some of the more popular flavors of Unix available:

2

Chapter 1

Sun Microsystem’s Solaris Unix

IBM AIX

Hewlett Packard HP-UX

Red Hat Enterprise Linux

Fedora Core

SUSE Linux

Debian GNU/Linux

Mac OS X

KNOPPIX

Yellow Dog Linux (for Apple systems)

Santa Cruz Operations SCO OpenServer

SGI IRIX

FreeBSD

OpenBSD

NetBSD

OS/390 Unix

Plan 9

Each of these flavors implements its version of Unix in a slightly different way, but even though the
implementation of a command may vary on some systems, the core command and its functionality follow
the principles of one of the two major variations. Most versions of Unix utilize SVR4 (System V) and add
the BSD components as an option to allow for maximum interoperability. This is especially true with com-
mands; for example, there are two versions of the ps command (for showing processes) available on most
systems. One version of ps might reside in /usr/bin/ps (the System V version) while the other might
exist in /usr/ucb/bin (BSD version); the commands operate similarly, but provide output or accept
optional components in a different manner.

04_579940 ch01.qxd 3/21/05 5:55 PM Page 2

Many vendors have attempted to standardize the Unix operating system. The most successful attempt, a
product of the noncommercial Institute for Electrical and Electronics Engineers, is standard 1003 (IEEE
1003), also known as the POSIX (Portable Operating Systems Interface) standard. That standard is also reg-
istered with the International Organization for Standardization under ISO/IEC 9945-1, which you can find
at http://iso.org/iso/en/CombinedQueryResult.CombinedQueryResult?queryString=9945.
The POSIX standard merged with the Single Unix Specification (SUS) standard to become one integrated
standard for all Unix flavors. It retained the name POSIX standard. Not all Unix versions follow the POSIX
standard to the letter, but most do adhere to the major principles outlined in the standard.

Early Unix systems were mainly commercial commodities like most software for sale; to run the operat-
ing system, you generally had to pay for that right. In 1984 an engineer named Richard Stallman began
work on the GNU Project, which was an effort to create an operating system that was like Unix and that
could be distributed and used freely by anyone. He currently runs the Free Software Foundation
(http://gnu.org/fsf/fsf.html), and many of the programs he and his supporters have created
are used in both commercial and open-source versions of Unix.

GNU stands for GNU’s Not Unix, which is a recursive acronym. The GNU Project wanted to create a
Unix-like operating system, not a Unix derivative (which would imply that it was a source-code copy
of Unix).

In 1991 Linus Torvalds, a Finnish graduate student, began work on a Unix-like system called Linux.
Linux is actually the kernel (kernels are discussed later in this chapter), while the parts with which most
people are familiar — the tools, shell, and file system — are the creations of others (usually the GNU
organization). As the Linux project gained momentum, it grew into a major contender in the Unix mar-
ket. Many people are first introduced to Unix through Linux, which makes available to desktop
machines the functionality of a Unix machine that used to costs thousands of dollars. The strength of
Linux lies in its progressive licensing, which allows for the software to be freely distributable with no
royalty requirements. The only requirement for the end user is that any changes made to the software be
made available to others in the community, thus permitting the software to mature at an incredibly fast
rate. The license under which Linux is distributed is called the GNU Public License (GPL), available at
http://gnu.org/licenses/licenses.html.

Another free variant of Unix that has gained popularity is the BSD family of software, which uses the
very lenient BSD License (http://opensource.org/licenses/bsd-license.php). This license
allows for free modification without the requirement of providing the software source code to others.
After a landmark 1994 lawsuit settlement, BSD Unix became freely distributable and has evolved into
the NetBSD, FreeBSD, and OpenBSD projects, and it also forms the underlying technology for Darwin
(upon which Mac OS X is based).

These freely available Unix derivatives have given new life to the Unix operating system, which had
been experiencing a decline as the Microsoft Windows juggernaut advanced. Additionally, Apple has
become the highest-volume supplier of Unix systems. Now Unix is moving forward in the corporate
environment as well as in the end-user desktop market.

Operating System Components
An operating system is the software interface between the user and the hardware of a system. Whether
your operating system is Unix, DOS, Windows, or OS/2, everything you do as a user or programmer
interacts with the hardware in some way. In the very early days of computers, text output or a series of

3

Unix Fundamentals

04_579940 ch01.qxd 3/21/05 5:55 PM Page 3

lights indicated the results of a system request. Unix started as a command-line interface (CLI) system —
there was no graphical user interface (GUI) to make the system easier to use or more aesthetically pleas-
ing. Now Unix has some of the most customizable user interfaces available, in the forms of the Mac OS X
Aqua and Linux’s KDE and GNOME interfaces among others, making the Unix system truly ready for
the average user’s desktop.

Let’s take a brief look at the components that make up the Unix operating system: the kernel, the shell,
the file system, and the utilities (applications).

Unix Kernel
The kernel is the lowest layer of the Unix system. It provides the core capabilities of the system and
allows processes (programs) to access the hardware in an orderly manner. Basically, the kernel controls
processes, input/output devices, file system operations, and any other critical functions required by the
operating system. It also manages memory. These are all called autonomous functions, in that they are
run without instructions by a user process. It is the kernel that allows the system to run in multiuser
(more than one user accessing the system at the same time), multitasking (more than one program run-
ning at a time) mode.

A kernel is built for the specific hardware on which it is operating, so a kernel built for a Sun Sparc
machine can’t be run on an Intel processor machine without modifications. Because the kernel deals
with very low-level tasks, such as accessing the hard drive or managing multitasking, and is not user
friendly, it is generally not accessed by the user.

One of the most important functions of the kernel is to facilitate the creation and management of pro-
cesses. Processes are executed programs (called jobs or tasks in some operating systems) that have owners —
human or systems — who initiate their calling or execution. The management of these can be very com-
plicated because one process often calls another (referred to as forking in Unix). Frequently processes also
need to communicate with one another, sending and receiving information that allows other actions to
be performed. The kernel manages all of this outside of the user’s awareness.

The kernel also manages memory, a key element of any system. It must provide all processes with ade-
quate amounts of memory, and some processes require a lot of it. Sometimes a process requires more
memory than is available (too many other processes running, for example). This is where virtual mem-
ory comes in. When there isn’t enough physical memory, the system tries to accommodate the process
by moving portions of it to the hard disk. When the portion of the process that was moved to hard disk
is needed again, it is returned to physical memory. This procedure, called paging, allows the system to
provide multitasking capabilities, even with limited physical memory.

Another aspect of virtual memory is called swap, whereby the kernel identifies the least-busy process or a
process that does not require immediate execution. The kernel then moves the entire process out of RAM
to the hard drive until it is needed again, at which point it can be run from the hard drive or from physical
RAM. The difference between the two is that paging moves only part of the process to the hard drive,
while swapping moves the entire process to hard drive space. The segment of the hard drive used for vir-
tual memory is called the swap space in Unix, a term you will want to remember as you move through this
book. Running out of swap space can cause significant problems, up to and including system failure, so
always be sure you have sufficient swap space. Whenever swapping occurs, you pay a heavy price in sig-
nificantly decreased performance, because disks are appreciably slower than physical RAM. You can
avoid swapping by ensuring that you have an adequate amount of physical RAM for the system.

4

Chapter 1

04_579940 ch01.qxd 3/21/05 5:55 PM Page 4

Shells
The shell is a command line interpreter that enables the user to interact with the operating system. A shell
provides the next layer of functionality for the system; it is what you use directly to administer and run
the system. The shell you use will greatly affect the way you work. The original Unix shells have been
heavily modified into many different types of shells over the years, all with some unique feature that the
creator(s) felt was lacking in other shells. There are three major shells available on most systems: the
Bourne shell (also called sh), the C shell (csh), and the Korn shell (ksh). The shell is used almost exclu-
sively via the command line, a text-based mechanism by which the user interacts with the system.

The Bourne shell (also simply called Shell) was the first shell for Unix. It is still the most widely available
shell on Unix systems, providing a language with which to script programs and basic user functionality
to call other programs. Shell is good for everyday use and is especially good for shell scripting because
its scripts are very portable (they work in other Unix versions’ Bourne shells). The only problem with the
Bourne shell is that it has fewer features for user interaction than some of the more modern shells.

The C shell is another popular shell commonly available on Unix systems. This shell, from the
University of California at Berkeley, was created to address some of the shortcomings of the Bourne
shell and to resemble the C language (which is what Unix is built on). Job control features and the capa-
bility to alias commands (discussed in Chapter 5) make this shell much easier for user interaction. The
C shell had some early quirks when dealing with scripting and is often regarded as less robust than the
Bourne shell for creating shell scripts. The quirks were eventually fixed, but the C shell still has slight
variations, resulting from different implementations based on which entity (commercial provider or
other resource) is providing the shell.

The Korn shell was created by David Korn to address the Bourne shell’s user-interaction issues and to
deal with the shortcomings of the C shell’s scripting quirks. The Korn shell adds some functionality that
neither the Bourne or C shell has while incorporating the strong points of each shell. The only drawback
to the Korn shell is that it requires a license, so its adoption is not as widespread as that of the other two.

These are by no means the only shells available. Here’s a list of some of the many shells available for the
different Unix systems:

❑ sh (also known as the Bourne shell)[

❑ PDKSH (Public Domain Korn shell)

❑ bash (Bourne Again Shell — a revamped version of Bourne shell)

❑ Z shell

❑ TCSH (TENEX C shell)

As with everything Unix, there are many different implementations, and you are free to choose the shell
that best suits your needs based on the features provided. Chapter 5 examines several shells in detail.

The Other Components
The other Unix components are the file system and the utilities. The file system enables the user to view,
organize, secure, and interact with, in a consistent manner, files and directories located on storage
devices. The file system is discussed in depth in Chapter 4.

5

Unix Fundamentals

04_579940 ch01.qxd 3/21/05 5:55 PM Page 5

Utilities are the applications that enable you to work on the system (not to be confused with the shell).
These utilities include the Web browser for navigating the Internet, word processing utilities, e-mail
programs, and other commands that will be discussed throughout this book.

Try It Out Run Unix from a CD-ROM
The best way to learn Unix is to follow along with the book and try some of the exercises while you
are reading. If you don’t have a current install of a Unix operating system, and you do have an Intel/
AMD-based system (a PC that is Windows compatible), you can use KNOPPIX, a bootable Linux distri-
bution. KNOPPIX enables you to try Unix right from a CD, without installing or modifying any other
operating system on your computer. It provides a full-featured Linux environment and is a great way to
see what Linux and Unix is about.

1. Use the copy of Knoppix included on this book’s CD or download the KNOPPIX ISO image
from one of the mirrors listed at http://knopper.net/knoppix-mirrors/index-en.html.
There are usually two versions of the software, one in German and one in English; choose
the image with the extension -EN.iso.

2. If you downloaded a copy of Knoppix, use your favorite CD-burning software to burn a copy of
the ISO onto a CD-R.

3. Insert the CD-ROM included with this book or the CD-R you created into your CD-ROM drive
and boot (load) from it. By default, most systems let you boot from a CD-ROM simply by putting
the disk in the drive. (If the CD-ROM doesn’t start automatically, you may need to contact your
computer manufacturer’s manual for instructions.) You’ll see the opening KNOPPIX screen,
which should be similar to the one in Figure 1-1.

Figure 1-1

6

Chapter 1

04_579940 ch01.qxd 3/21/05 5:55 PM Page 6

4. Press Enter (or Return) to continue the boot process. You’ll see a screen similar to the one shown
in Figure 1-2.

Figure 1-2

5. The boot sequence continues through a few more screens.

Because KNOPPIX is bootable and can be transported from system to system, you do not enter a pass-
word as you would with most Unix distributions.

Figure 1-3 shows the desktop loading.

6. When you are done, exit the system by rebooting (restarting) or shutting down your computer.
You can do this by pressing Ctrl+Alt+Del. A dialog box provides you with options to Turn Off
Computer or Restart Computer. If you select Restart Computer, take out the CD-ROM during
the reboot to return to your regular operating system.

7

Unix Fundamentals

04_579940 ch01.qxd 3/21/05 5:55 PM Page 7

Figure 1-3

How It Works
The KNOPPIX distribution has been optimized to run within RAM from the CD-ROM. It does not need
to modify the hard drive or install itself anywhere. It can be run without fear of damaging the current
contents of your hard drive.

Summary
This chapter briefly discussed the history of Unix and introduced some of the versions of Unix. The Unix
core components — the kernel, shells, file system, and utilities — were introduced.

In the past, Unix was considered a system geared to the most computer-savvy users and those who wanted
a system for core functionality, with no regard to aesthetics or user friendliness. Unix has evolved to fit the
needs of many different types of users, from the no-nonsense corporate environment to the novice com-
puter user’s desktop. There are rich desktop environments available for many flavors of Unix, for example,
and every currently selling Macintosh computer is running a version of Unix right out of the box.

In Chapter 2, you begin using a Unix system from initial login to logout.

8

Chapter 1

04_579940 ch01.qxd 3/21/05 5:55 PM Page 8

2
First Steps

This chapter introduces you to interacting with the Unix operating system. It examines the initial
Unix boot process, shows you how to log in to the system and to properly shut down the system,
and explains what the shell offers you. It also covers the man command, which is Unix’s built-in
system help facility. This chapter provides the foundation upon which other chapters will build.

System Startup
What occurs from the power-off position until your operating system is fully available is called the
boot process. In the simplest terms, the boot process consists of the Read-Only Memory’s (ROM, or
NVRAM, or firmware) loading of the program for actually booting (starting) the system. This ini-
tial step (commonly called bootstrapping) identifies the devices on the system that can be booted
or started from. You can boot or start from only one device at a time, but, because many different
devices can be identified as bootable, one of those other identified devices can be used if one
bootable device has a failure. These devices may load automatically, or you may be shown a list
of devices from which you can choose. Figure 2-1 shows a list of bootable devices in a Solaris boot
system on the Intel platform.

The boot device doesn’t have to be a physical hard drive, because the system can boot from the
network or from removable storage such as a CD-ROM or floppy diskette. A boot device simply
holds the information about where to load the operating system. The bootstrap phase only identi-
fies the hardware available for booting and whether it is usable.

Control is then transferred to the kernel. The operating system has not been loaded at this point,
and the system is not usable for production processes. Some systems show the boot process by
means of messages on the screen, and others hide the system messages from the users by using
graphical figures to represent the boot process. Figure 2-2 shows the boot drive being identified
during the Solaris boot process.

05_579940 ch02.qxd 3/21/05 5:56 PM Page 9

Figure 2-1

Figure 2-2

After the initial bootstrapping, the boot program begins loading the Unix kernel, which typically resides in
the root partition of the system. The kernel on most Unix systems is called unix; in Linux systems, it might
be called vmunix or vmlinuz. Its location differs according to the Unix version, as these examples show:

10

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 10

❑ AIX: /unix

❑ Linux: /boot/vmlinuz

❑ Solaris: /kernel/unix

These are only a few of the different kernel locations, but in general you shouldn’t have to modify the
kernel in day-to-day or even development processes unless you are a system administrator or need to
add/remove some functionality from the kernel for a specific need.

The kernel’s initial tasks, which vary according to hardware and Unix version, are followed by the ini-
tialization phase, in which the system processes and scripts are started. The init process is the first job
started and is the parent of all other processes. It must be running for the system to run. The init process
calls the initialization scripts and completes administrative tasks relative to the system, such as starting
sendmail, the X or window server (that provides the graphical user interface), and so on.

The init process looks into the initialization specification file, usually called /etc/inittab. This file
identifies how init should interpret different run levels and what scripts and processes should be started
in each run level. A run level is a grouping of processes (programs in the most basic sense) or daemons
(processes that run all the time).

Figure 2-3 shows the initialization phase on a Mac OS X system.

Figure 2-3

11

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 11

Mac OS X and some of the newer versions of Unix are not as verbose as other Unix systems, because, as
Unix has evolved, the makers of the different Unix systems have made ease of use their primary goal.
Because the typical end user has no use for the information, a lot of the messages that appear on initial-
ization screens of older versions of Unix generally aren’t displayed by Mac OS X and user-friendly
Linuxes.

You can use the escape sequence (Cmd+v) to view the boot messages on the Mac OS X.

Figure 2-4 shows the end of the system initialization of a freshly installed Solaris 10 system.

Figure 2-4

At first, this information may seem odd or even alarming, but there is generally an explanation of the
message in the script or logs to track down a problem as your Unix knowledge progresses. For example,
the 10th line shows an error in syslogd (the system logging daemon, which is discussed in Chapter 15):
syslogd: line 24: WARNING: loghost could not be resolved. That may look like big trouble,
but it is in fact a minor issue that can be resolved by adding a single entry in /etc/hosts. You’ll learn
more about these messages, how to identify them, and how to troubleshoot them in Chapter 15.

12

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 12

Figure 2-5 shows a Linux system booting (after the initialization phase), and again there are some mes-
sages that can be disconcerting, such as the one on line 3: Your system appears to have shut
down uncleanly.

Figure 2-5

These errors are usually fixed automatically or can be corrected using the fsck command, which is
introduced in Chapter 4.

The boot-up screens contain a wealth of information, but you don’t have to watch every message as it
displays on your screen. You can use the command dmesg to gather boot-up messages that you can
peruse at your leisure. To change the boot-up parameters, you must modify either the system Read-Only
Memory (ROM) or the Unix operating system initialization scripts as discussed later in the book.

After the initialization phase has completed, the system is running and ready for users to log in. You will
see a login prompt or graphical login screen on your system if you are logging in locally.

Logging In and Out of Unix
Logging in means that you are authenticating yourself to the Unix system as a valid user who needs to
utilize resources. When you attempt to log in to a Unix system, you are typically asked to authenticate
yourself by providing a username and password pair, although logins can include more advanced mech-
anisms such as biometrics (a retina eye scan, for example) or one-time-use tokens that change password
combinations every few seconds. You can log in by using either a graphical user interface (GUI) or
the command line.

13

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 13

Logging In via GUI
If you have a keyboard/mouse and monitor directly connected to the Unix system, you can log in much
like users log in to their home systems. The initial login screen can take many forms, from the traditional
command line that only presents text information to graphical logins complete with pictures. Let’s look
at a few examples. Figure 2-6 shows a command-line interface on a Mandrakelinux login screen via a
command line interface.

Figure 2-6

Figure 2-7 shows a graphical login for a Mandrakelinux system.

Figure 2-7

14

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 14

Figure 2-8 shows a Solaris 10 graphical login.

Figure 2-8

The username and password that you supply are against the internal system file or database containing
a list of valid usernames and passwords. Figure 2-9 shows a Mac OS X login screen asking the user to
select as whom he wants to log in.

Figure 2-9

15

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 15

In this example, selecting Beginning Unix brings up the screen shown in Figure 2-10, where a valid pass-
word must be entered.

Figure 2-10

An incorrect password usually results in a text or graphic message letting the user know the password
entered is invalid. Most Unix systems are set up to freeze an account or set a time delay if a user enters
a password incorrectly more than three (or some other specified number of) times. This is for security
reasons, so that someone cannot easily continue to enter different passwords in an attempt to log in to
another person’s account. A correct password starts the login process, which might look much like that
shown in Figure 2-11.

16

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 16

Figure 2-11

Logging In at the Command Line
There are instances where Unix systems aren’t running graphical user interfaces and all work is done
using the command line. In these cases, you typically see either a banner message indicating the type of
machine you are logging in to or a message set up by the system administrator. Sometimes you won’t
see anything other than the login prompt. Figure 2-12 shows a sample login screen from a Linux system.

17

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 17

Figure 2-12

The banner portion of this screen is this part:

Mandrake Linux release 10.0 (Official) for i586
Kernel 2.6.3-7ndksmp on an i686

The first line of the banner indicates that this is a Linux system, specifically the Mandrake 10 distribu-
tion. The second line indicates the kernel the system is running and also specifies the teletype number
(screen). Banners differ from system to system, but you can generally figure out what information is
being presented. Because of security concerns, this information may be absent on systems that are pub-
licly accessible through the Internet (exact system specifications make it easier for hackers to attack the
system).

The third line shows the hostname, which can be a name (linux, in Figure 2-12) or IP address (such as
192.168.1.1) and then the phrase login:. This is where you enter the username that you are logging in
as. Notice that the command line login doesn’t offer any hints about what username to use, so you have
to know it ahead of time. Figure 2-13 shows a login failure, followed by the sequence of events for a suc-
cessful logging in.

18

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 18

Figure 2-13

In this example, the user enters beginningunix as the username and presses Enter (or Return). The
request for the password comes on the screen (line 4). The user enters a bad password for that account,
and the system responds with the Login incorrect statement, followed by another chance to log in.
This time the user enters the correct username and password. The system then displays the last time the
user was logged in and provides access to a command line shell so that the user can begin working on
the system.

The last time logged in is a security feature that enables you to see when the account was last used.
If you notice that the last time logged in was a time when you weren’t using the system, someone may
have broken into your account. Contact the system administrator immediately.

If you use the command line to log in either remotely or locally and your username/password combina-
tion is rejected, the system does not tell you which part of the login is incorrect. You get the same
message —Login incorrect— whether your username is invalid or your password is wrong. Figure
2-14 shows the username beginningunix entered with an erroneous password, followed by a bad user-
name entered with beginningunix’s password, and you can see that the system’s response to both of
these login attempts is the same: Login incorrect. This is another security mechanism to prevent
malicious entities from attempting to guess usernames on the system; everyone must have a valid
username/password combination to log in.

Do not forget your username and password, because there are usually no hints for either when you log
in to Unix.

19

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 19

Figure 2-14

Remotely Logging In
Unix was built with networking in mind, allowing for remote operations via a command line or graphi-
cal user interface. When remotely logging in, you generally use a network protocol such as TCP/IP (dis-
cussed in Chapter 16).

A protocol is a standard method for transferring information between two different systems.

The following are some of the most common methods for logging in to a remote Unix system:

Command Description

ssh Logs in interactively to a shell to perform multiple functions such as running
commands. This method uses encryption to scramble the session so that the
username, password, and all communications with the remote system are
encrypted* (not readable by others).

telnet Logs in interactively to a shell to perform multiple functions such as running
commands. Because this method is not encrypted,* the username, password,
and all communications with the remote system are sent in plain text and pos-
sibly viewable by others on the network.

sftp Logs in to transfer files between two different systems. This method is
encrypted.* (sftp is discussed in Chapter 8.)

ftp Logs in to transfer files between two different systems. This method is not
encrypted.* (ftp is also discussed in Chapter 8.)

20

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 20

*Encrypted means that the text is not understandable by others and is in a sense scrambled. For exam-
ple, if the phrase “this is my password” were encrypted, it might show up as “14N!&x&*0|~dB{2” to
anyone else viewing the session over the network.

These are by no means the only methods for remote logins. For example, the r commands —rsh (remote
shell), rcp (remote copy), and rlogin (remote login) — were prevalent in the past, but because they
offer little security, they’re generally discouraged in today’s environments. rsh and rlogin are similar
in functionality to telnet, and rcp is similar to ftp.

To enable remote logins, the local and remote systems must have connectivity to each other and allow
for access via the communications path (that is, no firewall or system restrictions).

Most Unix systems have support for the protocols/commands used to connect to external systems, but
these services may not always be available to you for remote connections (the remote machine may not
allow connections to the system, for example). In these cases, you must contact the system administrator
of the Unix system in order to determine the method for connecting remotely.

Using ssh
ssh (Secure SHell) and telnet are two methods that enable you to log in to a remote system and run com-
mands interactively; that is, you can use most if not all of the commands available to your account as if you
were locally connected. To use these commands, you need the following information at a minimum:

command hostname

command indicates the protocol you want to use (preferably ssh if it’s available, because the session
would be encrypted) to connect, and hostname indicates the remote system to which you want to
connect. hostname can be an actual name (such as darwin) or an IP address (such as 192.168.1.58).
To connect to system darwin (IP address of 192.168.1.58) from a Linux system with ssh, you could type:

ssh darwin

or

ssh 192.168.1.58

An IP address is a numerical designation used by the computer to route information from one system to
another. Because a long set of numbers is often difficult for humans to remember, you can use a common
name to refer to a remote system if the system is set up properly. More on this is discussed in Chapter 16.

After typing either of these commands, you’d see the same type of prompt or information that you did
when you logged in locally via the command line.

In Figure 2-15, for example, running the command hostname shows you the hostname of the system on
which you’re running the command. In this example, it’s DARWIN, a Mac OS X system. Then the ssh
command is typed: ssh 192.168.1.65 (the IP address for the Linux system named linux).

21

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 21

Figure 2-15

If this is the first time you are using ssh to connect to the remote system, you are prompted to accept the
remote system’s keys, or identification, as shown on line 11 (this occurs only the first time you connect to
the system). You can confirm the key with the remote system administrator. If someone changes the sys-
tem or tries to pretend to be the server using ssh (and trying to steal your user credentials), you will be
notified with a warning.

After entering the password for the user account, you are put into a shell on the remote system. The rea-
son you are not asked your username is that the ssh command sends the username you are logged in
with on the local system unless you specify a different username. Now execute hostname, and you see
that you are truly remotely logged in to the machine named linux.

When you run ssh hostname, ssh assumes that you want to log in to the remote system with the same
username that you’re using on the local system. Your username on different systems may not always be
the same because of differing naming conventions, so you may be jdoe on one system, johnd on another,
and jd1234 on a third. If you need a different username to log on to a remote system, use the following
syntax:

ssh username@hostname

If you are logged into system darwin as user johnd and want to remotely log in to system 192.168.1.65
(linux) as user jdoe, you type:

ssh jdoe@192.168.1.65

Remember that hostname can be an actual name (such as boardroom) or an IP address (such as
192.168.1.58).

22

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 22

Using telnet
ssh gives you encryption from local to remote server and vice versa, providing more security during
the working session, but ssh may not always be available to you because of system restrictions or policy.
If that’s the case, you generally need to use telnet, which offers the same functionality, but with no
encryption of data being transmitted between the local and remote systems. telnet is an older protocol
that’s in wide use even in today’s security-conscious environment because it’s available on many major
platforms (including Microsoft Windows and DOS) by default. You use telnet much like ssh except
that sometimes you are prompted for your username and password (telnet doesn’t always assume you
want to log in as the current user). To telnet from the darwin machine to the solaris machine
(192.168.1.60), you’d type:

telnet solaris

or

telnet 192.168.1.60

as shown in Figure 2-16.

Figure 2-16

In Figure 2-16, hostname is run to determine the current system’s hostname (DARWIN), and then the
telnet 192.168.1.60 command is issued. The system requests the user’s password, and after it’s
provided, the last login and banner information is displayed. Running hostname again produces the
expected results: solaris. The user can now run commands as if her screen and keyboard were directly
connected to the solaris system.

23

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 23

The Shell
After you log in, you are taken to the shell predefined for you by your system administrator. (Shells
were introduced in Chapter 1.) A command line interface or a graphical user interface (GUI) displays,
giving you access to the shell. Figure 2-17 shows a typical command line interface.

Figure 2-17

If you are using a GUI, locate the xterm or konsole application that gives you access to the shell. Then
you’re all set to enter the commands discussed throughout this book.

Logging Out
After you have completed the work you need to do on the system using your interactive login, you need
to exit the system in a controlled and orderly manner to prevent processes or jobs from ending abruptly.
The command exit ends your shell session (or you can use the command logout in the bash or c shell as
described in Chapter 5). This closes the window that you are logged in to or ends your session completely.
If you are using a GUI, there is typically a button or key sequence that logs you out of the session.

System Shutdown
Unix is a multiuser, multitasking system, so there are usually many processes or programs running at all
times. Because the file system needs to be synchronized, just turning the power off creates issues with
the file system and affects the stability of the system. There are always processes or tasks running on the
system, even if no users are logged in, and an improper shutdown can cause numerous problems.

You typically need to be the superuser or root (the most privileged account on a Unix system) to shut
down the system, but on some standalone or personally owned Unix boxes, an administrative user and
sometimes regular users can do so. Some GUIs enable you to shut down your system by clicking a button.

24

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 24

The most consistent way to shut down a Unix system properly via the command line is to use one of the
following commands:

Command Function

halt Brings the system down immediately.

init 0 Powers off the system using predefined scripts to synchronize and
clean up the system prior to shutdown. (Not available on all Unix
systems.)

init 6 Reboots the system by shutting it down completely and then
bringing it completely back up. (Not available on all systems.)

poweroff Shuts down the system by powering off.

reboot Reboots the system.

shutdown Shuts down the system.

The preferred method is to use shutdown, which is available on all Unix systems. It uses scripts pro-
vided by the system for a proper shutdown and has most of the functionality of the other commands.
The halt command typically brings down the system immediately without going through the recom-
mended shutdown sequence, causing file system synchronization issues (possible corruption of data
or worse).

Another way to shut down and restart the system is to use the following command:

shutdown -r

To shut down the computer so that you can use the poweroff button to physically power the system
down safely, you can use the following command:

shutdown -h

Using the shutdown command is the most proper way to bring the system down without corrupting
data or creating system inconsistencies.

Getting Help with Man Pages
Unix commands have always had a multitude of arguments or options to allow different types of func-
tionality with the same command. Because no one can possibly remember every Unix command and all
its options, there has been online help available since Unix’s earliest days. Unix’s version of help files are
called man pages. Man (manual) pages present online documentation in a standard format that is readable
by any user and is set up in a consistent and logical manner. The command is used by simply typing the
following syntax:

man command

25

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 25

You replace command with the name of the command you want more information about. For example, to
see the man page for the command man, you would type:

man man

at which point you would see output similar to the following (from a Linux system):

man(1) man(1)

NAME

man - format and display the on-line manual pages
manpath - determine user’s search path for man pages

SYNOPSIS
man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]
[-M pathlist] [-P pager] [-S section_list] [section] name ...

DESCRIPTION
man formats and displays the on-line manual pages. If you specify sec-
tion, man only looks in that section of the manual. name is normally
the name of the manual page, which is typically the name of a command,
function, or file. However, if name contains a slash (/) then man
interprets it as a file specification, so that you can do man ./foo.5
or even man /cd/foo/bar.1.gz.

See below for a description of where man looks for the manual page
files.

OPTIONS
-C config_file

Specify the configuration file to use; the default is
/etc/man.config. (See man.config(5).)

...

This has been cut for brevity. To see the whole man page, type man man at the command line.

...
SEE ALSO

apropos(1), whatis(1), less(1), groff(1), man.conf(5).

BUGS
The -t option only works if a troff-like program is installed.
If you see blinking \255 or <AD> instead of hyphens, put `LESS-
CHARSET=latin1’ in your environment.

TIPS
If you add the line

26

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 26

(global-set-key [(f1)] (lambda () (interactive) (manual-entry (cur-
rent-word))))

to your .emacs file, then hitting F1 will give you the man page for the
library call at the current cursor position.

To get a plain text version of a man page, without backspaces and
underscores, try

man foo | col -b > foo.mantxt

September 2, 1995 man(1)

Man pages are generally divided into sections, which generally vary by the man page author’s prefer-
ence. Here are some of the more common sections:

❑ NAME— Name of the command.

❑ SYNOPSIS— General usage parameters of the command.

❑ DESCRIPTION— Generally describes of the command and what it does.

❑ OPTIONS— Describes all the arguments or options to the command.

❑ SEE ALSO— Lists other commands that are directly related to the command in the man page or
closely resembling its functionality.

❑ BUGS— Explains any known issues or bugs that exist with the command or its output.

❑ EXAMPLES (or TIPS) — Common usage examples that give the reader an idea of how the com-
mand can be used.

❑ AUTHORS— The author of the man page/command.

You won’t always know the command you need to use, but if you know what a major point of a com-
mand is, you can search the man pages using the -k option, which looks for keywords in the man pages.
If you need to change the permission settings of a file, for example, but can’t remember the command to
use, you can type:

man -k permission

You’ll get a list of commands with the word permission in their keywords.

Try It Out Use the Man Pages
1. Using the man pages, search for a keyword of your choice to see what commands show up. If

you can’t think of one, use this:

man -k shell

2. Read the man page for one of the commands from your search result list.

27

First Steps

05_579940 ch02.qxd 3/21/05 5:56 PM Page 27

How It Works
The results of your search show every command that matches with your keyword, and you can then
view their man pages to find the command you need.

The man pages are a vital resource and the first avenue of research when you need information about
commands or files in a Unix system.

Summary
This chapter covered the basics of using a Unix system, from logging in to shutting down the system.
You also learned how to use the online help system in the form of the man pages, which enable you to
become a self-reliant user as your toolbox of Unix commands grow.

28

Chapter 2

05_579940 ch02.qxd 3/21/05 5:56 PM Page 28

3
Understanding Users

and Groups

A user account provides you with access to the Unix system, whether by a shell, an ftp account, or
other means. To use the resources that the Unix system provides, you need a valid user account
and resource permissions (permissions are discussed in Chapter 4). Think of your account as your
passport, identifying who you are to the Unix system.

For further Mac OS X–specific information regarding users and groups, see Chapter 20.

This chapter discusses the basics of accounts and what accounts are on the various Unix systems,
examines how to administer accounts, and explores the purposes of groups and how groups work.
It also includes other pertinent information about users and groups in Unix.

Account Basics
There are three primary types of accounts on a Unix system: the root user (or superuser) account,
system accounts, and user accounts. Almost all accounts fall into one of those categories.

Root Account
The root account’s user has complete and unfettered control of the system, to the point that he can
run commands to completely destroy the system. The root user (also called root) can do absolutely
anything on the system, with no restrictions on files that can be accessed, removed, and modified.

The Unix methodology assumes that root users know what they want to do, so if they issue a com-
mand that will completely destroy the system, Unix allows it. If you are used to working with
Microsoft Windows, its administrator account is most like Unix’s root account, except that
Windows generally tries to protect itself from you — if you try to format the disk that the operat-
ing system is on, Windows prevents you from doing so, but Unix accepts the command and starts
formatting with no regard to self-destruction. This basic tenet is why people generally use root for
only the most important tasks, and then use it only for the time required — and very cautiously.

06_579940 ch03.qxd 3/21/05 5:58 PM Page 29

System Accounts
System accounts are those needed for the operation of system-specific components. They include, for
example, the mail account (for electronic mail functions) and the sshd account (for ssh functionality).
System accounts are generally provided by the operating system during installation or by a software
manufacturer (including in-house developers). They generally assist in the running of services or pro-
grams that the users require.

There are many different types of system accounts, and some of them may not exist on your Unix sys-
tem. For instance, some of the system account names you may find in your /etc/passwd file (discussed
later in this chapter) are adm, alias, apache, backup, bin, bind, daemon, ftp, guest, gdm, gopher, halt,
identd, irc, kmem, listen, mail, mysql, named, noaccess, nobody, nobody4, ntp, root, rpc, rpcuser, and
sys. These accounts are usually needed for some specific function on your system, and any modifications
to them could adversely affect the system. Do not modify them unless you have done your research on
their functionality and have tested the system with any changes.

User Accounts
User accounts provide interactive access to the system for users and groups of users. General users are
typically assigned to these accounts and usually have limited access to critical system files and directo-
ries. Generally you want to use eight characters or fewer in an account name, but this is no longer a
requirement for all Unix systems. For interoperability with other Unix systems and services, however,
you will most likely want to restrict your account names to eight characters or fewer.

An account name is the same as a username.

Group Accounts
Group accounts add the capability to assemble other accounts into logical arrangements for simplifica-
tion of privilege (permission) management. Unix permissions (which are discussed in depth in Chapter 4)
are placed on files and directories and are granted in three subsets: the owner of the file, also known as
the user; the group assigned to the file, also known simply as group; and anyone who has a valid login
to the system but does not fall into either the owner or group subsets, also known as others. The exis-
tence of a group enables a resource or file owner to grant access to files to a class of people. For example,
say that a company with about 100 employees uses a central Unix server for all activities from produc-
tion to research to support objectives. Three of the employees compose the company’s human resources
(HR) staff; they often deal with sensitive information, including salaries, pay raises, and disciplinary
actions. The HR staff has to store its information on the server everyone else uses, but its directory,
Human_Resources, needs to be protected so that others cannot view the contents. To enable HR to set
specific permissions on its files that allow access only to HR staff, the three staff members are put into a
group called hr. The permissions on the Human_Resources directory can then be set to allow those
members to view and modify files, while excluding all who fall into the other group (everyone else).

One of the strengths of groups is that an account can belong to many groups, based on access require-
ments. For instance, the two members of the internal audit team may need to access everyone’s data, but
their directory, called Audit, needs to be protected from everyone else’s account. To do this, they can
belong to all groups and still have a special audit group in which they are the only members. This situa-
tion is discussed later in the chapter.

30

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 30

Managing Users and Groups
User management is a cornerstone activity for the healthy upkeep of a system. For security purposes,
management should be limited to a few users who need to administer accounts. There are three main
user administration files:

❑ /etc/passwd— Identifies the authorized accounts for the system.

❑ /etc/shadow— Holds the encrypted password of the corresponding account. Most Unix sys-
tems have this file.

❑ /etc/group— Contains information on group accounts.

/etc/passwd
The first — and the most important — administration file is /etc/passwd. This file holds the majority of
information about accounts on the Unix system. Almost anyone with an account on the system can view
the file, but only root can modify it. Figure 3-1 shows a sample /etc/passwd file from a Linux machine.

Figure 3-1

Figure 3-2 shows an /etc/passwd file from a Solaris 10 system. It’s nearly identical to the file shown
in Figure 3-1 because the format is the same among the various Unix systems.

31

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 31

Figure 3-2

Take a look at any of the lines in the file (the example in Figure 3-3 uses the beginningunix line at the
end of the file shown in Figure 3-1), and you can see that there are seven distinct parts — called fields —
separated by colons. Although some fields can be left empty, each entry in the file must have all seven
fields. Figure 3-3 indicates the location of each of the fields.

Figure 3-3

Here are descriptions of the file entry fields, with examples from the line shown in Figure 3-3:

1. Login ID (username) that a user enters to log in to the account. Usernames should be unique,
so avoid duplicate names, which only introduce confusion and create serious permission prob-
lems. Usernames are generally assigned by the administrator. Because users must use their user-
names to log in to the system, complexity versus ease of use must be weighed when selecting
username schemas.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

2. Encrypted password or x. If shadow passwords are used, this field contains just an x. In the
early days of Unix, the password field contained the user’s encrypted password, but as

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

Encrypted Password or x

Login ID UID

Default GID

GCOS/Comment Home Directory

Login Shell

32

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 32

machines got more powerful, it became easier to crack or discover the passwords, and pass-
words were moved to a separate file called /etc/shadow. Permissions allow only specific
accounts to view that file. Some versions of Unix still include the encrypted password in the
/etc/passwd file, but this practice is generally frowned upon. An administrator usually assigns
a user’s initial password.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

3. UID (user ID number) by which the system knows the account. This is how Unix represents the
user (instead of using the username). A user often interacts with the system only through an
account name, but the Unix system uses a number (UID) to represent the user. Every account
is assigned a UID, generally in the range from 0 to 65535, with 0–99 reserved for system IDs
(root — the superuser — is always 0). The 65535 limit is not valid on all systems (some allow for
many more). The UID does not have to be unique, although having users share UIDs is a bad
practice because logging and permissions become confusing when two users share a UID.
(The functionality sought by having users share UIDs can be accomplished through groups.)
An administrator typically assigns account names and UIDs.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

The UID is what really identifies the user to the system. You can change your root account’s name to
admin but because the UID associated with the account is 0, the system identifies it as the superuser.
You could also assign the 0 UID to another user, and that account would have superuser permissions
(this assignment presents security issues and is highly discouraged).

4. Default GID (group ID) — the primary, or default, group to which the account belongs. This
doesn’t limit the total groups to which the account can belong; it only identifies the regular
group the user belongs to upon login. This number doesn’t need to be unique because many
users can share the same group with no adverse effects on the system. Lower-number groups
are generally used for system account groups.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

5. The GCOS, or comment, field holds information about the accounts, such as the full name of the
user, the telephone or office number, or any other human-readable information. This field can
contain almost anything you want (except a colon, which would represent the end of the field).
Most organizations use it to add some contact information for the account in case there is a
problem. Anything in this file (and field) can be viewed by anyone on the system, so do not pro-
vide sensitive information such as credit card numbers or Social Security numbers. This field
can be left blank with no adverse effect (you’ll have two colons next to each other, the “blank
field” in between).

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

Interestingly, the GCOS field derives its name from the General Electric Comprehensive Operating
System (GECOS), or General Comprehensive Operating System. The field was originally used for hold-
ing GCOS identification for services that ran off GECOS systems (which was its own operating sys-
tem). GCOS is not in much use these days, but the term survives today when referring to this field.

6. Location of the account’s starting, or home, directory (used to store personal files). This can be
any valid directory (usually but not always /home) on which the user has full permissions (read,

33

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 33

write, and execute). The directory is usually owned by the account with which it’s aligned. Do
not assign any account with /tmp as the home directory because this can create serious security
vulnerabilities.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

7. The user’s login shell. It must be a valid shell (usually listed in the /etc/shells file), or else
the user cannot log in interactively. All valid shells are usually identified in /etc/shells.
(Shells are described in depth in Chapter 5.) If the shell identified in field seven doesn’t exist
(such as a misspelled entry), the user will not be able to log in interactively. Be very careful
when manually editing this field.

beginningunix:x:510:500:Beginning Unix:/home/beginningunix:/bin/bash

/etc/shadow
The /etc/shadow file contains the encrypted password entries for local users as well as any password
aging (which tells when passwords expire) or restrictions. Figure 3-4 shows a sample /etc/shadow file
from a Linux system.

Figure 3-4

Figure 3-5 shows an /etc/shadow example from a Solaris 10 Unix system. The field content is slightly
different from what is shown in Figure 3-4, but the nine fields are the same.

34

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 34

Figure 3-5

Figure 3-6 uses the last line in Figure 3-4 to indicate the colon-delimited fields.

Figure 3-6

beginningunix: 1rS2RgftT$fe3j8yS20GV90PeuE8KpZ0: 12736: :99999:::

Login ID
(Field 1)

Minimum
(Field 4)

Maximum
(Field 5)

Warning
(Field 6)

Inactive
(Field 7)

Expires
(Field 8)

Last Changed
(Field 3)

Reserved
(Field 9)

Encrypted Password
(Field 2)

35

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 35

Here are descriptions of the file entry fields, with examples from the line in Figure 3-6:

1. The login ID (username, or account name). This information corresponds to the /etc/passwd
entry for the account.

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

2. The encrypted version of the password (which can be 13 or more characters depending on the
Unix implementation). Because this file is readable only by root, the passwords are more pro-
tected than if they were in the openly readable in /etc/passwd file. If this field is blank, the
user is not required to enter a password — a very dangerous situation, because only the account
name need be discovered for the system to be compromised. There are ways to lock an account
(prevent anyone from using it) with this field as well, depending on the version of Unix. On
some systems, for example, NP in this field means that the user cannot actively log in to the
account, but must log in with his own account and then use sudo (discussed later in this chap-
ter). You can also put a * (*LK* for Solaris) to indicate that the account is locked.

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

3. The number of days from January 1, 1970, until the password was changed. This is used in con-
junction with the other fields to determine if the account and password are still valid and if the
password requires updating.

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

The January 1, 1970, date represents what is called the epoch. It’s a date picked out by the creators of
Unix as a good start time.

4. The minimum number of days before the user can change his password again. This allows the
system administrator to protect the user from changing his password too soon after the previ-
ous change, reducing the chance an attacker can change the password if he finds it. This field is
also used for administrative functions such as password propagation between systems.

In this example, the field is blank:

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

5. The maximum number of days the password is valid before requiring a change. The administra-
tor uses this field to enforce password change policies and to reduce the likelihood that a mali-
cious entity can use brute force (continually trying passwords) to crack the password, which can
take a significant amount of time, depending on how good the password is.

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

6. The number of days the user is warned before password expiration. It is a good practice to give
each user warning that her password is going to expire, so that she has the opportunity to
change it at a convenient time before its expiration. If the user fails to change her password in
the given amount of time, she could be locked out of the system until the system administrator
can intervene.

In this example, the fields 6–9 are blank, as they are in most systems:

beginningunix:1cth3s70B$Sol7rv9u.UyKtEyZ0HP.V.:12736::9999::::

36

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 36

7. Varies between the various Unix implementations but generally represents either the number of
consecutive days of account inactivity that can elapse before the password is disabled, or the
number of days after a password expires until that account is disabled.

8. The number of days from January 1, 1970, until the account expires. This is useful in creating
limited-time accounts (such as for temporary employees with a fixed date of hire and
contract end).

9. Reserved for future use.

/etc/group
The /etc/group file contains the group information for each account. Figure 3-7 shows a sample
/etc/group file from a Linux system.

Figure 3-7

Figure 3-8 shows the same file on a Solaris 10 system.

37

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 37

Figure 3-8

The files have the same format. Here are descriptions of the four colon-separated fields, using the next-
to-last line in Figure 3-7 as an example:

1. The name of the group, which is how the group is identified to users. In this example, the group
name is the same as the account name.

beginningunix:x:500:

2. The password for using the group. This field is blank (no password) on most systems, but it
can contain the encrypted password for the group or an x for a shadowed password. The
/etc/passwd security issues also apply in this case, which is why some systems use a group
shadow file. That file is generally located at /etc/gshadow; refer to your vendor documenta-
tion for more information on the file and its format.

beginningunix:x:500:

3. The group ID (GID). This number identifies the group to the system. It is how Unix sees the
group (similar to /etc/passwd UID).

beginningunix:x:500:

4. Comma-separated list of accounts that belong to the group. The line preceding the example line
in Figure 3-7 shows that the account beginningunix also belongs to the author group:

author:x:106:beginningunix

This information allows permissions to be set accordingly (discussed in Chapter 4). The field
can be blank, as the example shows.

beginningunix:x:500:

38

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 38

Mac OS X Differences
The preceding are primary user administration files on almost all Unix systems. Mac OS X is a notable
exception to this. The /etc/passwd, /etc/shadow, and /etc/group files exist, but are used by the sys-
tem only for single-user mode (discussed in Chapter 20). The primary repository for this information is
the NetInfo database, which can be viewed and modified with the niutil command. Here’s how to
view a list of the current databases:

niutil -list . /

This command generates output similar to that shown in Figure 3-9.

Figure 3-9

To view one of the databases, such as a listing of current users, you can type the following:

niutil -read . /groups

The output of this command is shown in Figure 3-10.

For more information about NetInfo on Mac OS X, see Chapter 20.

The Mac OS X graphical user interface (GUI) makes it easy to manage user accounts because it was built
with ease of use in mind from the start. This is an advantage over some of the other Unix systems.

39

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 39

Figure 3-10

Managing Accounts and Groups
Some Unix systems use different commands or command structures (options to the command), but
using the command line to create, modify, and delete accounts and groups is fairly standardized among
them. Following are commands available on the majority of Unix systems and their descriptions:

Command Description

useradd Adds accounts to the system.

usermod Modifies account attributes.

userdel Deletes accounts from the system.

groupadd Adds groups to the system.

groupmod Modifies group attributes.

groupdel Removes groups from the system.

To add or delete an account manually (without using the preceding commands), you would have to:

❑ Modify /etc/passwd to add or remove the account line.

❑ Modify /etc/shadow to add or remove the account line.

❑ Modify /etc/group to add or remove the account references.

❑ Add or remove the account’s home directory (if not shared, which by default it should not be).

40

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 40

You can avoid these steps by using the commands. You’ll also reduce the risk of introducing a typo into
one of the files, which could make your system unusable. To run these commands, you must be logged
in as root (superuser).

Account Management
The useradd command enables you to add a user in a single command line. The following table
describes some of the options to the useradd command.

Option Description File and Field Affected

-c Comment for the GCOS or comment field (use /etc/passwd; Field 5
quotes if you have a space in the comments).

-d Account’s home directory. /etc/passwd; Field 6

-e Expiration date of the account in yyyy-mm-dd /etc/shadow; Field 8
or mm/dd/yy format, depending on the Unix
version. (The account is not valid after this date.)

-f Number of days the account can be inactive /etc/shadow; Field 7
before being disabled or the number of days
after the password has expired that the account
will be disabled.

-g Initial group (default group). /etc/passwd; Field 4

-G Comma-separated list of supplementary or /etc/group; Field 4 of
secondary groups to which the user belongs. groups identified in the

command line

-m Creates the home directory if it doesn’t exist. Not applicable

-s The user’s shell for interactive logins. /etc/passwd; Field 7

-u Assigns user ID (unique unless -o option, which /etc/passwd; Field 3
allows duplicate UIDs, is used). UIDs 0–99 are
generally reserved for system accounts.

The structure of the command is:

useradd -c comment -d home directory -e expiration date -f inactive days -g primary
(default) group -G secondary groups -m -s shell -u user id accountname

The last item is the account name. It is not optional. It’s field 1 in the /etc/passwd file.

Here’s an example that creates an account for a user named unixnewbie, whose real name is Jane Doe. Jane
needs the account until July 4, 2006. Her primary group is users, and authors is her secondary group. She
has requested the Bourne shell for her default shell. She isn’t sure she will be using this system, so let’s dis-
able her account if she hasn’t used it within 60 days. The useradd command to create this account is:

useradd -c “Jane Doe” -d /home/unixnewbie -e 040406 -f 60 -g users -G authors -m -s
/bin/ksh -u 1000 unixnewbie

41

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 41

After this command runs, a password to the account must be set using the passwd accountname com-
mand. To create the password for Jane Doe’s account, root would type:

passwd unixnewbie

The new account owner should change the password immediately.

Try It Out Create an Account with useradd
A new temporary employee, Sarah Torvalds, has joined your company today (5/01/05). Sarah’s man-
ager has requested that you create an account for Sarah. She has joined the company to assist in some
end-of-the-year human resources work, so she needs access to the default user group and to the hr
group. Her contract with the company ends 120 days from her start day (the same day the account is
created). Standard users are created with an inactive account timeout of 30 days, are assigned to the
employees group by default, and are assigned the c shell. Usernames are created using the first initial
and last name (no more than eight characters total for the account name, in this case for compatibility
with other Unix systems). You need to create an account for Sarah using the useradd command because
you do not have access to any graphical tools. First log in as root, then run the following commands:

useradd -c “Sarah Torvalds” -d /home/storvald -e 05/01/05 -f 30 -g employees -G
hr -m -s /bin/csh -u 1005 storvald
passwd storvald
Changing password for user storvald.
New UNIX password:
Retype UNIX password:
passwd: all authentication tokens updated successfully.
#

How It Works
The useradd command modifies the /etc/passwd, /etc/shadow, and /etc/group files and creates a
home directory. Just think how much easier this is than having to manually edit all three files and create
the home directory! useradd works quickly because the format for the files is standardized and can be
easily used. You can also create scripts using this command to make the process even easier.

You can use the -D option to assign default values to some of the useradd values, making the com-
mands easier to run. Refer to the useradd man pages for more information.

The usermod command enables you to make changes to an existing account from the command line
(instead of modifying system files). It uses the same arguments as the useradd command, plus the -l
argument, which allows you to change the account name. For instance, to change Sarah Torvalds’
account name to saraht and provide her with a home directory, you’d issue the following command:

usermod -d /home/saraht -m -l saraht storvald

This command changes Sarah Torvalds’ current account (storvald) and makes the new home directory
/home/saraht (-d /home/saraht -m) and the new account name saraht (-l saraht). The -m creates
the home directory that hadn’t previously existed.

42

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 42

The userdel command is extremely easy to use and can therefore be dangerous if not used with cau-
tion. There is only one argument or option available for the command: –r, for removing the account’s
home directory and mail spool (mail file). Here’s how to remove the saraht account:

userdel -r saraht

If you want to keep her home directory for backup purposes, omit the -r option. You can remove the
home directory as needed at a later time.

The useradd, usermod, and userdel commands work similarly in most Unix systems (Solaris, Linux,
BSD, and so on) but not in Mac OS X. If you want to modify accounts with the command line, you need
to use niutil with the -create, -createprop, and -appendprop arguments. niutil is a Mac OS
X–specific command; refer to your man pages for more information if you are using Mac OS X and need
to add users at the command line.

Group Management
Managing groups is accomplished with the groupadd, groupmod, and groupdel commands on most
Unix systems. groupadd has this syntax:

groupadd -g group_id group_name

To create a new group for the finance department called finance_2 and assign it a unique GID of 535, for
example, you’d use:

groupadd -g 535 finance_2

This command makes the appropriate entry in the /etc/group file.

To modify a group, use the groupmod syntax:

groupmod -n new_modified_group_name old_group_name

To change the finance_2 group name to financial, type:

groupmod -n financial finance_2

You can also use the -g option with groupmod to change the GID of the group. Here’s how you’d change
the financial GID to 545:

groupmod -g 545 financial

To delete an existing group, all you need are the groupdel command and the group name. To delete the
financial group, the command is:

groupdel financial

This removes only the group, not any files associated with that group. (The files are still accessible by
their owners.)

43

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 43

User Management with Graphical User Interface Tools
There are many graphical user interface (GUI) tools available on the various Unix systems, and although
space prohibits covering them in depth in this book, you should be aware of their existence. The use of
GUI tools makes management much easier for new administrators, but a good understanding of the
command line interface tools is necessary before you use them primarily. Let’s take a look at a few of the
GUI tools; refer to your own documentation for more information on the many tools available.

Mac OS X
Mac OS X has very straightforward user management tools. To access them, click the Apple icon in the
upper-right corner of the screen and select System Preferences. Then choose Account in the section
labeled System (bottom left). Figure 3-11 shows the screen that appears.

Figure 3-11

Two accounts — User and Beginning Unix (both of which are admin type accounts, meaning they can
run system administrator commands on the system) — can be seen in Figure 3-11. From this screen, you
can add, edit or modify, and delete an account. You can also set the account to log in automatically upon
boot-up.

To edit an existing account, simply highlight the account and click the Edit User button. Figure 3-12
shows an example of the account screen that displays.

44

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 44

Figure 3-12

To set the auto login for an account or to delete an account, highlight the account and click the appropri-
ate button. To create a new user, just click the New User button.

Linux
Linux offers many ways to manage accounts with a GUI. Every distribution has its own method of user
administration. Here’s a list of the commands that start the various graphical administration tools on the
major distributions of Linux:

Distribution Command

SUSE /sbin/yast2

Red Hat (Fedora Core) /usr/bin/system-config-users

Mandrakelinux /usr/sbin/userdrake

All webmin

The webmin command enables remote administration, typically with a graphic interface for users and
other types of administrative tasks. It is available at http://webmin.com and works on most Unix sys-
tems, including Solaris’s. Webmin is not installed by default on most versions of Unix.

The Linux tools vary in functionality, but generally provide all the capabilities of the command-line
equivalents.

45

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 45

Solaris
Solaris provides a tool called admintool, which allows for granular management of accounts and
groups. To access admintool, type the following at the command line:

admintool &

The ampersand (&) after the command puts the command process in the background so you can con-
tinue using the terminal window for other operations.

It has many features and can manage devices as well as users. To learn more about the capabilities of this
tool, visit Sun Microsystems’ Web site (www.sun.com) and search for admintool.

Becoming Another User
There are times when you will need to log into another account without logging out of the system. There
are two commands that enable you to do this: su and sudo. The su (switch user) command is available
on all versions of Unix. It enables you to remain logged in as yourself while accessing another account.
You must know the password for the account you are trying to access using su unless you are the root
user, in which case you don’t need a password (on the local system). Here’s the syntax for su:

su accountname

If you are logged in as jdoe, for example, and want to log in as jsmith, type:

su jsmith

When using su, you continue to use your own environment variables and profile (which you’ll learn in
Chapter 5). If you want to use the account’s user environment, put a dash (-) between the su and the
account name:

su - jsmith

You will be asked for the password of the account to which you are switching unless you are the root user,
in which case you are immediately logged in to the account. If you type the su command with no account
name (with or without the -), you are attempting to log in to the root account and will be asked for the
root password. (Many people think su stands for superuser because running the su command by itself
takes you to the root, or superuser, account). When you have completed the tasks requiring the account
you’ve su’d to, type exit. You’re returned to your original account (and environment, if applicable).

The sudo (superuser do) command enables the superuser, or root administrator, to delegate commands
that can be run by others. It is not available on all Unix systems but can be downloaded from
http://courtesan.com/sudo/. Here’s the command’s syntax:

sudo command to run

46

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 46

To list all the commands available for the user to run with sudo, type:

sudo -l

Before you can run any commands, the system generally requires you to enter your password so it can
validate your credentials.

On Mac OS X, you cannot easily log in as the root user using the su command, but you can use the sudo
command to achieve the same functionality by typing:

sudo /bin/sh

This command takes you to a root shell, which is equivalent to running su by itself with no arguments
(this works with other versions of Unix as well).

User- and Group-Related Commands
A number of commands can give you important user and group information to help you manage your
accounts and the systems. The who command, for example, identifies who is currently logged in to the
system. To use it, just type who at the command line. Its output is similar to what is shown in Figure 3-13.

Figure 3-13

The output is in four columns: login name, terminal, login time, and remote hostname or X display. In
Figure 3-13, three users are logged in: beginnin (beginningunix, but the name was truncated for space
reasons on the output) twice and jdoe. The console is the terminal (screen display) as well as the ttyp1
and ttyp2, which are terminals (devices to identify what terminal the user is on). The next field identifies
the date and time when each the user logged in, and you can see that jdoe came in from a remote con-
nection (192.168.1.2).

47

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 47

Sometimes you will be logging in to different machines or will have switched users so much that you
aren’t sure what user you currently are. To do so, use the whoami or who am i command. These com-
mands look almost the same, but the spaces make a big difference. whoami shows who you are currently
logged in as, whereas who am i shows who you originally logged on to the system as. Figure 3-14
shows examples of the two commands.

Figure 3-14

The first time the whoami command is run, it shows the user as beginningunix, which is the user who
logged in to this system. Then the who am i command also shows that the user is beginning unix, along
with the other information that appears with the who command. Following the sudo sh command in
Figure 3-14, taking beginningunix to a root shell, whoami shows the user as root.

The id command shows information about the user logged in and about the user’s groups. An example
of id displaying the beginningunix account’s information is shown in Figure 3-15, followed by an id
after sudo sh, which shows the root user’s information.

48

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 48

Figure 3-15

Everything after the uid= and before the gid= is the user ID information, and everything after the gid=
pertains to primary and secondary (supplemental) groups to which the account belongs.

The groups command can identify the groups to which a user or your account belongs. Run by itself,
it identifies the groups of the currently logged-in user. Supply an account name as an argument, and
groups reports on that user’s groups. Figure 3-16 shows examples of both.

49

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 49

Figure 3-16

All of these commands will help you manage your accounts and the systems.

Summary
In this chapter, you learned what accounts and groups are and how to manage them. You explored
switching users and other important administrative commands that can help you build your Unix
knowledge base as you progress into later chapters. Now that you understand accounts and groups, put
your new knowledge to work on the following exercises.

Exercises
1. What are the three primary files that deal with user and group administration? What are they for?

2. Jane Doe is a new contractor who will be joining your company May 1, 2005, to work on an
Information Technology project and also to assist in some end-of-fiscal-year Human Resources
work. Jane’s manager has requested that you create an account for Jane, who will need access to

50

Chapter 3

06_579940 ch03.qxd 3/21/05 5:58 PM Page 50

the employees, info_tech_1, info_tech_2, and info_tech_5 groups. Her contract with the com-
pany ends 31 days from her start date. Create the account using useradd. Here’s additional
information you’ll need: Standard users are created with an inactive account timeout of 10 days,
and are assigned the Korn shell. A username (account name) is created using the person’s first-
initial-and-last-name combination (up to eight characters for the account name). In this com-
pany, all accounts have the employee name in the /etc/passwd file as well as a designation of
E for full-time employees or C for contractors before the name, with one space between the des-
ignator and the employee name. The system uses the /export/home directory for home direc-
tories. Assign Jane’s account the userid 1000 because the most recent account UID created was
999. You are already logged in as root.

51

Understanding Users and Groups

06_579940 ch03.qxd 3/21/05 5:58 PM Page 51

06_579940 ch03.qxd 3/21/05 5:58 PM Page 52

4
File System Concepts

A file system is a component of Unix that enables the user to view, organize, secure, and interact
with files and directories that are located on storage devices. There are different types of file sys-
tems within Unix: disk-oriented, network-oriented, and special, or virtual.

❑ Disk-oriented (or local) file system — Physically accessible file systems residing on a hard
drive, CD-ROM, DVD ROM, USB drive, or other device. Examples include UFS (Unix File
System), FAT (File Allocation Table, typically Windows and DOS systems), NTFS (New
Technology File System, usually Windows NT, 2000, and XP systems), UDF (Universal
Disk Format, typically DVD), HFS+ (Hierarchical File System, such as Mac OS X), ISO9660
(typically CD-ROM), and EXT2 (Extended Filesystem 2).

❑ Network-oriented (or network-based) file system — A file system accessed from a remote
location. These are usually disk-oriented on the server side, and the clients access the
data remotely over the network. Examples include Network File System (NFS), Samba
(SMB/CIFS), AFP (Apple Filing Protocol), and WebDAV.

❑ Special, or virtual, file system — A file system that typically doesn’t physically reside on
disk, such as the TMPFS (temporary file system), PROCFS (Process File System), and
LOOPBACKFS (the Loopback File System).

This chapter discusses disk-oriented file systems in depth and briefly covers the network-oriented
and special file systems. Mac OS X users should keep in mind that, although their file system lay-
out differs sharply from that of a traditional Unix system, all of the utilities mentioned in this
chapter are available and useful on a Mac OS X system. Also, Unix is a case-sensitive operating
system, but Mac OS X is a case-insensitive/case-preserving operating system. The significance of
this difference will be discussed later in this chapter.

File System Basics
A file system is a logical collection of files on a partition or disk. A partition is a container for infor-
mation and can span an entire hard drive if desired. An apple pie, for example, can be eaten whole
or it can be cut into slices, which is similar to how a hard drive or other physical storage device

07_579940 ch04.qxd 3/21/05 6:00 PM Page 53

can be manipulated. A slice of pie is akin to a partition on a drive, and the whole pie could represent a
single partition that takes up a whole disk. There are more advanced meanings as well, but for this chap-
ter, only a hard drive or the systematic division of a hard drive is considered to be a partition.

A partition usually contains only one file system, such as one file system housing the / file system or
another containing the /home file system. One file system per partition allows for the logical mainte-
nance and management of differing file systems. These partitions are invisible to users, who can move
effortlessly among any number of file systems on their Unix systems without even knowing they’ve
gone from one to another.

Everything in Unix is considered to be a file, including physical devices such as DVD-ROMs, USB
devices, floppy drives, and so forth. This use of files allows Unix to be consistent in its treatment of
resources and gives the user a consistent mechanism of interaction with the system. It’s easy to under-
stand, then, why file systems are an integral part of a Unix operating system.

Unix uses a hierarchical structure to organize files, providing a from-the-top approach to finding infor-
mation by drilling down through successive layers in an organized fashion to locate what’s needed. It’s
similar to the way that a filing cabinet works. The file cabinet itself is the holder of all information — in
other words, it’s the base of the filing system. To find hiring information about a certain employee, for
example, you need to locate the correct file cabinet, the correct drawer in the cabinet, the correct folder
in the drawer, and the correct page of information inside the folder.

In Unix, everything starts with the root directory, often designated only by /. (This directory is not to be
confused with the user account named root, which was discussed in Chapter 3.) All other files and direc-
tories originate there. The root directory generally includes a set of commonplace directories (see the
“Root’s Basic Directories” section of this chapter), then subdirectories within those directories, and so on.
To find specific information in Unix, you need to locate the correct directory, the correct subdirectories,
and the correct file.

Directory Structure
Unix uses a hierarchical file system structure, much like an upside-down tree, with root (/) at the base
of the file system and all other directories spreading from there. The vast majority of Unix systems use
the directories shown in Figure 4-1 and described in the next table. (For information about the directory
structure on Mac OS X, see Chapter 20.) Not every version of Unix will have all the directories listed, nor
is this an all-inclusive list, because Unix vendors may incorporate their own directories.

Every vendor’s Unix systems implement their own directory structures as needed by the vendor and its
customers. No system has the exact same directory structure as another, but they generally have the
directories described in this chapter and usually follow the conventions outlined as well.

Essentially, you always start with the root directory to find any other directory or file. If the hiring infor-
mation you wanted to find earlier is stored in your Unix computer, you might find the specific informa-
tion (let’s call the employee John Doe) in /home/hr/A_J/John_Doe, where / is the root directory, home
is a subdirectory of root, hr is a subdirectory of home, A_J is a subdirectory of hr, and John_Doe, the file
you want, is in the A_J directory.

54

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 54

Figure 4-1

Root’s Basic Directories
Remembering that root is the base of the file system, there are some core directories that generally exist on
most Unix systems. The directories have specific purposes and generally hold the same types of informa-
tion for easily locating files. Following are the directories that exist on the major versions of Unix:

Directory Description

/ Root should contain only the directories needed at the top level of the file structure
(or that come already installed in it). Unnecessary subdirectories under root can
clutter your system, making administration more difficult and, depending on the
system, filling up the space allocated for /.

bin Usually contains binary (executable) files critical for system use, and often contains
essential system programs, such as vi (for editing files), passwd (for changing pass-
words), and sh (the Bourne shell).

boot Contains files for booting the system.

Table continued on following page

/boot

/dev or /devices (or both)

/bin

/

/etc

/home

/kernel

/lib

/mnt

/opt

/proc

/sbin

/tmp

/usr

/var

55

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 55

Directory Description

dev Either or both of these will exist. They contain device files, often including
devices cdrom(CD-ROM drive), eth0 (Ethernet interface), and fd0 (floppy drive).

(The devices are often named differently in the different Unix systems.)

etc Contains system configuration files such as passwd (holds user account information
and is not to be confused with /bin/passwd); hosts (contains information about
host resolution); and shadow (contains encrypted passwords).

export Often contains remote file systems (those external to the physical system), such as
home directories exported from another system to save space and centralize home
directories.

home Contains the home directory for users and other accounts (specified in
/etc/passwd, for example).

kernel Contains kernel files.

lib Contains shared library files and sometimes other kernel-related files.

mnt Used to mount other temporary file systems, such as cdrom and floppy for the
CD-ROM drive and floppy diskette drive, respectively.

proc Contains all processes marked as a file by process number or other information that
is dynamic to the system.

sbin Contains binary (executable) files, usually for system administration. Examples
include fdisk (for partitioning physical disks) and ifconfig (for configuring
network interfaces).

tmp Holds temporary files used between system boots (some Unix systems do not delete
the contents of the tmp directory between boots).

usr Used for miscellaneous purposes, or can be used by many users (such as for man
pages). Can include administrative commands, shared files, library files, and others.

var Typically contains variable-length files such as log and print files and any other type
of file that may contain a variable amount of data. For instance, the log files (typi-
cally in /var/log) range in size from very small to very large, depending on the
system configuration.

Your Unix system may contain more than, fewer than, or all of these directories, but it will generally
contain five or six of them plus subdirectories that vary from implementation to implementation.

Paths and Case
There are two other important concepts you should know about before moving on: paths (absolute and
relative) and case sensitivity.

Every file has an absolute path and a relative path. The absolute path refers to the exact location of the
file in its file system, such as /etc/passwd. The relative path refers to the location of a file or directory

56

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 56

in relation (relative) to your current location. If you are in the /etc directory, for example, the relative
path to /etc/passwd is passwd because it’s in the same directory you are. This is analogous to the loca-
tion of your home. If you were giving your address to someone who lived in your neighborhood, you’d
probably say that you lived two streets up at 1234 Anystreet. This would be your relative address —
relative to your neighbor. If you were giving your address to someone in another country, you’d put it in
more specific terms, such as 1234 Anystreet, Anytown, Montana, ZIP Code, USA, which would be your
absolute address. Using a relative location is good if you’re using it from a known location, but the abso-
lute path is always a safer option because you are specifying the exact location.

Unix is a case-sensitive operating system. This means that the case (capitalization) of file and directory
names matters. In DOS or Microsoft Windows systems, you can type a filename with no regard to the
capitalization. In Unix, you must know the case of the file or directory name because you could have three
different files named real_file, Real_file, and REAL_FILE. To make it easier for the user, though,
Unix filenames are conventionally lowercase (this especially true for system-generated files). Mac OS X
is a case-insensitive/case-preserving file system. This means that on Mac OS X there is no distinction
between naming a file real_file, Real_file, or REAL_FILE but only one of those filenames can exist at
a time. While Mac OS X does not distinguish between cases, it does retain the case as entered. Keep this in
mind when exchanging files between Mac OS X computers and other Unix systems.

Navigating the File System
Now that you understand the basics of the file system, you can begin navigating to the files you need.
The following are commands you’ll use to navigate the system:

Command Description

cat Concatenate: displays a file.

cd Change directory: moves you to the directory identified.

cp Copy: copies one file/directory to specified location.

file Identifies the file type (binary, text, etc).

find Finds a file/directory.

head Shows the beginning of a file.

less Browses through a file from end or beginning.

ls List: shows the contents of the directory specified.

mkdir Make directory: creates the specified directory.

more Browses through a file from beginning to end.

mv Move: moves the location of or renames a file/directory.

pwd Print working directory: shows the current directory the user is in.

rm Remove: removes a file.

Table continued on following page

57

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 57

Command Description

rmdir Remove directory: removes a directory.

tail Shows the end of a file.

touch Creates a blank file or modifies an existing file’s attributes.

whereis Shows the location of a file.

which Shows the location of a file if it is in your PATH.

Let’s take a closer look at some of these commands.

pwd
The first command you need is pwd, which shows you your current location within the file system.
Knowing where you are in the file system is critically important because you can cause serious damage
to the system by running certain commands when you think you are in one directory but are actually in
another. The pwd command has no arguments; just type pwd at the command line. The output is similar
to that shown in Figure 4-2.

Figure 4-2

cd
The cd (change directory) command enables you to move around within the file system. Used without
an argument, it returns you to your home directory. To move to another directory, that directory’s name
is required as the argument:

cd directory

58

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 58

If you type cd /etc, for example, you move to the /etc directory (you can use pwd to confirm your new
location). cd takes you to the location you specify as long as you have permissions to enter that direc-
tory. To go to the /var/adm directory, you’d use this command:

cd /var/adm

The directory in which you typically start when you log in on your Unix system is called your home
directory (you may be in a different directory if there is an administrative error or a problem with your
identified home directory). You will usually control the contents (files and directories) in your home
directory, which is defined in /etc/passwd and stores your files. You can use the ~ (tilde) to represent
your home directory in many commands. For example, cd ~ moves you to your home directory, and
ls ~ lists the contents of your home directory.

Remember that in Unix, everything is a file, including the current directory and the directory preceding
(or above) the current directory. There are two files in every directory called . (the current directory)
and .. (the next higher directory). If you are in /usr/openwin/share/etc/workspace/
patterns, for example, and you want to move to /usr/openwin/share/etc/workspace, you
can simply use cd .. instead of the longer cd /usr/openwin/share/etc/workspace. This con-
vention has many scripting applications, as you’ll learn in Chapters 13 and 14.

which and whereis
The which and whereis commands assist in finding files for which you know the names but not the
location. With the filename as the argument, which looks only through the files identified in your PATH
(an environment variable that contains a list of directories where executable files might be located; PATH
is discussed in Chapter 5).For example, if you are using the ls command and want to know where the
actual ls command resides in the file system (most Unix systems contain both BSD and System V ver-
sions of ls), you can use the command which ls. It will show you the instances of the command ls in
your PATH. The whereis command will locate the command in all its locations as defined by the system
rather than the searching only the user’s PATH. If the argument you supply after which or whereis
doesn’t exist on the file system, you receive a command not found type error message.

Figure 4-3 shows an example of the output of the which and whereis commands used with the vi com-
mand. (Vi, an editor, is discussed in Chapter 7.)

The which command shows only /usr/bin/vi because /usr/bin is before /usr/ucb in this user’s
PATH (as shown by the echo $PATH command in Figure 4-3). The output of the whereis command
shows all locations of the command in a list of standard places defined by the system.

The echo command repeats whatever arguments you provide. When used with a defined system variable,
the command shows you what the variable represents.

59

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 59

Figure 4-3

find
You can also use the find command to locate files in Unix, although this command may consume a lot
of resources (and make the system respond slowly). Here’s the syntax:

find pathname options

If you want to find the lostfile file, for example, and you think it’s somewhere in the /usr/share
directory, you can use this command:

find /usr/share -name lostfile -print

There are many options to the find command, and you should refer to the man (manual) pages for
more instructions on its many uses.

file
After you find a file, you will usually want to do something with it. The first step is to determine what
type of file it is (such as binary or text), and that’s where the file command comes in. The command
has the following syntax:

file filename

The output shows that the file is binary, text, directory, device, or any of the other types of files in Unix.
This is useful in determining whether a file can be viewed using the methods discussed next in this
chapter. For instance, a binary or directory file won’t show up very well using the more command
because of the coding of the characters.

60

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 60

ls
The ls command enables you to list the contents of any directory that you have permissions to. The ls
command by itself lists the contents of the current directory. To show the contents of any other directory,
use ls path. For instance ls /usr/bin shows you the files and directories that reside in the /usr/bin
directory. Using the ls -l command shows extended information about the directory contents. Figure 4-4
shows ls output, followed by ls -l output.

Figure 4-4

The following table describes what the extended information includes. The example output is from a
line in the output shown in Figure 4-4:

drwxr-xr-x 61 root sys 3584 Nov 3 19:20 etc

ls -l Output Description

drwxr-xr-x The type of file and the permissions associated with it (discussed in the
“File and Directory Permissions” section later in this chapter)

61 The number of links to the file (discussed in the “File Types” section)

root The owner of the file (discussed in Chapter 3)

sys The group to which the file owner belongs (discussed in Chapter 3)

Table continued on following page

61

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 61

ls -l Output Description

3584 Size of file (in characters)

Nov 3 19:20 The last time the file or directory was modified (changed)

etc Name of file or directory

If the ls command isn’t available for some reason, you can use the echo command to display files.
Simply use echo directory* to see the contents of a directory. For example, to view the contents
of the / directory, use echo /*, which shows output similar to running the ls command with no
options. To show hidden files (discussed in the following paragraph), use the echo /.* command. You
must use the * metacharacter. (Metacharacters are discussed in Chapters 7 and 8.)

Using the -a option with the ls command shows you all files or directories, including those that are
hidden. A file or directory can be hidden by placing a . (period) in front of the filename. A standard ls
command’s output does not list hidden files. One legitimate reason to hide a file or directory is to reduce
the amount of clutter shown when running ls. Figure 4-5 shows a directory’s ls output, followed by its
ls -a output so you can see the difference.

Figure 4-5

One of the most common problems you run into in using the ls command is getting a permission-
denied error when you try to list the contents of a directory as a non-root user. This error is typically
caused by insufficient permissions (discussed later in this chapter).

62

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 62

File Types
In the ls -l example (Figure 4-4), every file line began with a d, -, or l. These characters indicate the
type of file that’s listed. There are other file types (shown by their ls -1 single-character representation
in the following table), but these three are the most common.

File Type Description

- Regular file, such as an ASCII text file, binary executable, or hard link (links
are discussed in the following section)

b Block special file (block input/output device file used for transferring data
from or to a device such as a physical hard drive)

c Character special file (raw input/output device file used for transferring data
from or to a device such as a physical hard drive)

d Directory file (file that contains a listing of other files and/or directories con-
tained within the directory)

l Symbolic link file (discussed in the following section)

p Named pipe (a mechanism for interprocess communications)

s Socket (used for interprocess communication)

Links
A link in Unix is similar to a shortcut in Microsoft Windows. To comprehend links, you need to under-
stand inodes. Every file in Unix has a number, called an inode, associated with it. Unix doesn’t use the
filename to refer to the file; it uses the inode. An inode is unique to a partition, so two completely unre-
lated files can have the same inode if they’re in different partitions. That’s much like your driver’s license
number (inode), which is unique in your state (partition). A driver in another state can have the same
driver’s license number that you do, but the two of you can be uniquely identified based on your states.

Links are extremely useful in many ways, such as enabling you to alias a command, program, or file to a
more common name. You can also use links to create “copies” of a file without wasting storage space by
duplicating the actual content.

There are two types of links: hard and soft (also called symbolic). A hard link cannot span file systems
(physical file systems such as hard drives), and the file linked is exactly the same as the original file. In
inode reference, the file that you are linking to will have the same inode number as the link name, which
is why you cannot a hard link across different file systems. All changes made to either the file hard-linked
to or the file resulting from the hard link are reflected in both. To create a hard link, use the command:

ln file_name link_name

A hard link has the same inode as the original file, as shown by the ls -i command.

63

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 63

A soft (symbolic) link can span file systems or even different computer systems. It will have a unique
inode number assigned to it, and if the link is removed, the original file remains. To create a symbolic
link, use the command:

ln -s file_name link_name

If you look back at Figure 4-4, you’ll see an l in the file-type position and a -> next to the filename of the
second file in the ls -1 output. These indicate a link. The directory named bin shows./usr/bin after
the ->. This means the directory is really located in /usr/bin. Links are often used to make it easier to
find files, to create convenient shortcuts to other files, to group collections of files, and to call files or
directories by other names. Although directories typically show a d type in the first column of ls -l
output, a file that links to a directory shows a file type of l because it is not really a directory, but a link
to a directory.

When creating soft links, always use absolute paths instead of relative paths for maximum portability.
(Portability is being able to use a script on multiple types of Unix systems.)

Modifications to any of the links or to the original file that is linked to will be seen no matter how you ref-
erence the file (by the hard_link, the soft_link, or the original filename). When moving or deleting a
file that has links to it, you must be cognizant of any soft links on the system because you could break
them. For instance, say you have the sales_forecasts.txt file in a directory that contains your sales
forecasts for the year, but you want others to be able to look at it by using a soft link from a different
file system. You could create a soft link called steves_sales_forecasts.txt in a shared directory
so that others could easily locate and access it. You could also create the hard link my_sales_
forecasts_2005.txt in your home directory (assuming it is on the same file system) so you could
easily reference the file when you wanted to. If you change the name of the original file (sales_
forecasts.txt), the hard-linked file (my_sales_forecasts_2005.txt) will still point to the correct
file because hard links use the inode as the reference and the inode doesn’t change when the filename
changes. The soft-linked file steves_sales_forecasts.txt, however, will no longer point to the cor-
rect location because soft links use the filename as the reference. If you change the name of any of the
links (soft or hard), they will still point to the proper location because the original file doesn’t change.

One last word on modifying files with links: If you delete the original file that has links to it
(sales_forecasts.txt) and then re-create the file with different data but the same name
(sales_forecasts.txt), the hard link will no longer work because the inode of the file has
changed, but the soft link will still work because it refers only to the name of the file.

Try It Out Create Links
Links can be difficult to understand initially, but trying them out should clarify linking for you.

1. Use the cd command to navigate to your home directory:

$ cd ~

2. Use the touch command to create a file called original_file:

touch original_file

This will be the base file that you will link to using both hard and soft (symbolic) links.

64

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 64

3. Run the ls -l command to see the file you just created, with output similar to the following:

$ ls -l
-rw-r--r-- 1 username usergroup 0 Jan 16 16:19 original_file
$

Notice the number of links to the file is 1 (second column), meaning this is the only link to the
inode. (The file size is 0 — column before Jan — meaning this file contains no data.)

4. Use the ln command to create a hard link to original_file, naming the link hard_link:

$ ln original_file hard_link
$

If you try to create a hard link between files on different file systems, you will receive an error some-
thing like ln:/hard_link is on a different file system.

5. Run ls -l again. You should see the following two files (in addition to the rest of your home
directory files) in similar output:

-rw-r--r-- 2 username usergroup 0 Jan 16 16:19 hard_link
-rw-r--r-- 2 username usergroup 0 Jan 16 16:19 original_file

Notice the number of links to the file is 2 (second column), meaning this is one of two links to
the inode (the original file). The date last modified (Jan 16 16:19) is also the same for both files
even though you didn’t modify original_file.

6. Run the ls -i command to show the files’ inode numbers. You will see that the inode numbers
for the files are identical:

$ ls -i
116 hard_link
116 original_file
$

7. Now use the ln -s command to create a soft link to original_file called soft_link:

$ ln -s original_file soft_link

8. Use the ls -l command to show the files again. The output should be similar to the following:

$ ls -l
-rw-r--r-- 2 username usergroup 0 Jan 16 16:19 hard_link
-rw-r--r-- 2 username usergroup 0 Jan 16 16:19 original_file
-rw-r--r-- 1 username usergroup 13 Jan 16 16:30 soft_link -> original_file
$

Notice that soft_link shows a different number of links (1) and a different modification time
(16:30) than original_file and hard_link. It also has extra output showing where the link
goes (-> original_file) because it is linking to another file system, and is not a direct link to
the same inode.

65

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 65

9. Use the ls -i command to view all of the files’ inode numbers. You can see that soft_link’s
inode is not the same as original_file’s and hard_link’s.

$ ls -i
116 hard_link
116 original_file
129 soft_link
$

10. Use the cat command (discussed later in this chapter) to view the contents of each of the files
and confirm that no text or data exists in them:

$ cat original_file

$ cat hard_link

$ cat soft_link

$

11. To see how changing the original file affects the linked files, use the echo command and output
redirection to add the line “This text goes to the original_file” to original_file:

$ echo “This text goes to the original_file” >> original_file

This command echoes the text you type and then appends (>>) the output to the end of the file
original_file. Because there’s no other data in the file, the append command puts the new line
in at the beginning of original_file.

12. Run the ls -l command to see the difference in the file sizes of the original file and the links,
even though you added data only to original_file.

$ ls -l
-rw-r--r-- 2 username usergroup 36 Jan 16 16:52 hard_link
-rw-r--r-- 2 username usergroup 36 Jan 16 16:52 original_file
-rw-r--r-- 1 username usergroup 13 Jan 16 16:30 soft_link -> original_file
$

You can see that the size and modification time of hard_link and original_file have
changed, while the soft_link file remains the same. If you view the contents of the files
with the cat command, you see that the all three files have exactly the same contents:

$ cat original_file
This text goes to the original_file
$ cat hard_link
This text goes to the original_file
$ cat soft_link
This text goes to the original_file
$

13. To see how changing the hard-linked file affects the original file, use the echo command and
output redirection to add the line “This text goes to the hard_link file” to the
hard_link file:

$ echo “This text goes to the hard_link file” >> hard_link

66

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 66

14. Run ls -l and view the output. Both original_file and hard_link have changed modifica-
tion times and sizes, while soft_link has not:

$ ls -l
-rw-r--r-- 2 username usergroup 73 Jan 16 17:11 hard_link
-rw-r--r-- 2 username usergroup 73 Jan 16 17:11 original_file
-rw-r--r-- 1 username usergroup 13 Jan 16 16:30 soft_link -> original_file

15. Now use cat to show the contents of the files again. See how each has changed:

$ cat original_file
This text goes to the original_file
This text goes to the hard_link file
$cat hard_link
This text goes to the original_file
This text goes to the hard_link file
$ cat soft_link
This text goes to the original_file
This text goes to the hard_link file
$

If you use an echo command to add a line of text to the soft_link file, you will modify the
original file, which will cause the hard_link file to update as well.

16. Use the echo command and output redirection to add the line “This text goes to the
soft_link file” to the soft_link file:

$ echo “This text goes to the soft_link file” >> soft_link

17. Using the cat command to show the contents of the files, you get the following output:

$ cat original_file
This text goes to the original_file
This text goes to the hard_link file
This text goes to the soft_link file
#cat hard_link
This text goes to the original_file
This text goes to the hard_link file
This text goes to the soft_link file
$ cat soft_link
This text goes to the original_file
This text goes to the hard_link file
This text goes to the soft_link file
$

How It Works
These links all refer to the same file, but the way they appear on the system differs. Both soft links and
hard links can point to the same file, and editing them will modify the contents of the original. The pri-
mary differences between a hard link and a soft link are how they behave when the original file is
removed and how they are used when the link is on a file system different from the linked-to file.

67

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 67

File and Directory Permissions
The permissions of a file are the first line of defense in the security of a Unix system. The basic building
blocks of Unix permissions are the read, write, and execute permissions, which are described in the fol-
lowing table:

Permission Applied to a Directory Applied to Any Other Type of File

read (r) Grants the capability to Grants the capability to view the file.
readthe contents of the
directory or subdirectories.

write (w) Grants the capability to Grants write permissions, allowing an
create, modify, or remove authorized entity to modify the file,
files or subdirectories. such as by adding text to a text file, or

deleting the file.

execute (x) Grants the capability to Allows the user to “run” the program.
enter the directory.

- No permission. No permission.

Here’s example output from the ls -l command that includes one file and one directory:

$ ls -l /home/mikec
-rwxr-xr-- 1 mikec users 1024 Nov 2 00:10 myfile
drwxr-xr--- 1 mikec users 1024 Nov 2 00:10 mydir

The permissions for each are the second through the tenth characters from the left (remember the first char-
acter identifies the file type). The permissions are broken into groups of threes, and each position in the
group denotes a specific permission, in this order: read, write, execute. The first three characters (2–4) rep-
resent the permissions for the file’s owner (mikec in this example). The second group of three characters
(5–7) consists of the permissions for the group to which the file belongs (users in the example output). The
last group of three characters (8–10) represents the permissions for everyone else (“others” in Unix par-
lance). The following table elaborates on the permissions shown for myfile in the example ls -l output:

Characters Apply to Definition

rwx (characters The owner (known as The owner of the file (mikec) has read
2–4) user in Unix) of the file (or view), write, and execute permission

to the file.

r-x (characters The group to which the The users in the owning group (users)
5–7) file belongs can read the file and execute the file if it

has executable components (commands,
and so forth). The group does not have
write permission — notice that the
- character fills the space of a denied
permission.

68

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 68

Characters Apply to Definition

r-- (characters Everyone else (others) Anyone else with a valid login to the
8–10) system can only read the file — write

and execute permissions are denied (--).

The - is a placeholder to provide the proper separation for easier reading. If user sallyb belongs to the
users group and wants to view myfile, she can do so because the group has read and execute permis-
sions on that file. If she is not the owner and does not belong to the users group, she can view the file
only if the “others” group (“everyone else”) has read permission. In this example, everyone else has read
permission, so sallyb can view the file.

Directory permissions differ slightly, as the table at the beginning of this section shows. Read allows the
contents of the directory and subdirectories to be read; write enables creation, modification, and deletion
of files and subdirectories; and execute allows entry to the directory.

Changing Permissions
To change file or directory permissions, you use the chmod (change mode) command. There are two
ways to use chmod: symbolic mode and absolute mode. Applying permissions with chmod’s absolute
mode requires a numerical representation of the permissions, which is more efficient and is how the sys-
tem views permissions. Permissions applied with chmod’s symbolic mode use the familiar rwx format
and are easier to understand for most new users.

Using chmod in Symbolic Mode
The easiest way for a beginner to modify file or directory permissions is to use the symbolic mode. The
first set of file permissions (characters 2–4 from the ls -l command) is represented with the u, for user;
the second set (characters 5–7) is by g, for group; and the last set (characters 8–10) is represented by an o,
for everyone else (other). You can also use the -a option to grant or remove permissions from all three
groups at once.

With symbolic permissions you can add, delete, or specify the permission set you want by using the
operators in the following table. The example file, testfile, has original permissions of rwxrwxr--.

chmod operator Meaning Example Result

+ Adds the designated chmod o+wx Adds write and execute
permission(s) to a file testfile permissions for others
or directory. (permission character set

9–10) on testfile.

- Removes the designated chmod u-x Removes the file owner’s
permission(s) from a testfile capability to execute test-
file or directory. file (u = user or owner).

Table continued on following page

69

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 69

chmod operator Meaning Example Result

= Sets the designated chmod g=r-x Sets permissions for the
permission(s). testfile group to read and execute

on testfile (no write).

Here’s an example using testfile. Running ls -1 on testfile shows that the file’s permissions are
rwxrwxr--:

$ ls -l
-rwxrwxr-- 1 toms users 1024 Nov 2 00:10 testfile

Then each example chmod command from the preceding table is run on testfile, followed by ls -l
so you can see the permission changes:

$ chmod o+wx testfile
$ ls -l
-rwxrwxrwx 1 toms users 1024 Nov 2 00:10 testfile
$ chmod u-x testfile
$ ls -l
-rw-rwxrwx 1 toms users 1024 Nov 2 00:11 testfile
$ chmod g=r-x testfile
$ ls -l
-rw-r-xrwx 1 toms users 1024 Nov 2 00:12 testfile
$

Here’s how you could combine these commands on a single line:

$ chmod o+wx,u-x,g=r-x testfile

Using chmod with Absolute Permissions
The second way to modify permissions with the chmod command is to use a number to specify each set
of permissions for the file. Each permission is assigned a value, as the following table shows, and the
total of each set of permissions provides a number for that set.

Number Octal Permission Representation Permission Reference

0 No permission ---

1 Execute permission ---x

2 Write permission -w-

3 Execute and write permission: 1 (execute) + 2 (write) = 3 -wx

4 Read permission r--

5 Read and execute permission: 4 (read) + 1 (execute) = 5 r-x

6 Read and write permission: 4 (read) + 2 (write) = 6 rw-

7 All permissions: 4 (read) + 2 (write) + 1 (execute) = 7 rwx

70

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 70

The numbers from each set are stated together to form the file permissions. For example, if the file
owner (user) has read (4), write (2), and execute (1) permissions (4 + 2 + 1 = 7), the group has read per-
mission (4), and everyone else has no permissions (0), the permissions for the file would be 740. If you
want to change the myfile file’s permissions to those examples, use this command:

chmod 740 myfile

following the syntax of the chmod command, chmod permission filename.

To change testfile permissions (which were just changed to -rw-r-xrwx with chmod symbolic per-
missions) back to the original, you’d run this command:

$ chmod 774 testfile

Then run ls -l to verify:

$ ls -l /home/toms
-rwxrwxr-- 1 toms users 1024 Nov 2 00:10 testfile

If you used 043 instead of 774 in the chmod command, the new permissions would be:

$ ls -l /home/toms
----r---wx 1 toms users 1024 Nov 2 00:10 testfile

Permissions are a complex topic and are extremely important to the security of your system. Chapter 12
discusses the security implications of permissions in more depth.

Viewing Files
After you have traversed the file system and found the file you are looking for, you probably want to
view that file. There are many ways to do that in Unix, from using interactive editors (such as vi, which
is discussed in Chapter 7) to using some of the commands introduced in this section. The commands dis-
cussed here enable you to view a file quickly and move on without having to open a separate program.
These commands have other functionality, but for this chapter, the focus will be on their file-viewing
capabilities.

To view a file with all the output to the current terminal screen, use the command cat filename. This
can be a problem in a long file because cat by itself simply dumps the contents of the file, not allowing
you to pause the output — you’d have to read very fast! The more command can help. It runs the same
way as cat, but the output requires you to press the space bar or an arrow key to move the file forward,
enabling you to view a screenful of output at a time. With the more command you can also press Enter
to move forward a single line at a time. The less command is more powerful because you can move for-
ward and backward within the file using the vi movement keys (discussed in Chapter 7) or the arrow
keys. You have to press q to quit these file views. Here are examples of the more and less commands:

more /etc/syslog.conf

less /etc/syslog.conf

71

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 71

The head and tail commands are interesting because they enable you to view the beginning (head) or
the end (tail) of a file. Here’s how to use them:

head /etc/syslog.conf

tail /etc/syslog.conf

These commands show you only the first 10 or the last 10 lines of a file by default. If you want to see
more or fewer lines, you can specify it with the -n x argument, using the number of lines you want in
place of x. Here are sample commands to see the first 15 or last 15 lines of a file, respectively:

head -n 15 /etc/syslog.conf

tail -n 15 /etc/syslog.conf

An important option for the tail command is -f (for follow). This option continuously scans the input
file instead of simply showing the number of lines indicated. To review the /var/log/syslog file (sys-
tem log file for many Unix systems) in real time as events are occurring, for example, you could run:

tail -f /var/log/syslog

The output would show you the contents of /var/log/syslog as they were being written to the file
until you press the Ctrl+C key combination to stop the loop. This is very useful for watching files, espe-
cially log files, as they grow.

Creating, Modifying, and Removing Files
To copy a file within the file system, you can use the cp command. Here’s how you’d copy the file
/etc/skel/cool_file to another location:

cp /etc/skel/cool_file /home/danl/cool1

You must have the appropriate permissions to copy, move, or modify a file. Typically you will require at
least read permission on the source file (file to copy) and write access to the destination directory and/or
file for the copy to occur.

This command creates an exact duplicate of /etc/skel/cool_file in the /home/danl directory with
the name of cool1.

The cp command is good for copying files, but to move a file from one location to another without copy-
ing, you use the mv (move) command with similar syntax. For example, here’s how to move the
/etc/skel/cool_file from its original location to /home/danl and rename it cool1:

mv /etc/skel/cool_file /home/danl/cool1

72

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 72

The mv command can also simply change the name of a file or directory. To change the name of the
/home/danl/cool1 file to /home/danl/login_script, for example, you’d execute the following
command:

mv /home/danl/cool1 /home/danl/login_script

The mv command works on directories, too, so you can move an entire directory from one location to
another. If danl changed his username to danl12, you could change the home directory name using:

mv /home/danl /home/danl12

To create a blank file, you can use the touch command. If you use touch on an existing file, the last
modified information is adjusted, but if you use it with a new filename, a blank file is created. Here’s how:

touch filename

This is useful when you want to create a blank file for testing or other purposes.

Deleting Files
Of course, there will be times when you want to completely delete a file. Then you can use the rm
(remove) command. Here’s how to remove (delete) /etc/skel/cool_file from the system:

rm /etc/skel/cool_file

The rm command has very powerful options, the primary two being -f and -r. The -f option forces rm
to remove a file without asking if it is OK; it will make the command occur with no output and will just
take action. The -r option will have the rm command descend into any subdirectories of a directory
specified as an argument to the rm command. If a file is specified for deletion with the rm command, the
rm command will not descend into any directories (it descends into a directory only when a directory is
named for deletion).

You should also be very careful typing arguments of the rm command, especially when using the -f
(force) and -r (recursive, or descend into subdirectories), because you could remove or destroy your sys-
tem. For example, if you’re logged in as root, want to delete a file called /tmp/remove_file, and type:

rm -rf / tmp/remove_file

The accidental space between the / and tmp would cause the / file system to be deleted, completely
obliterating your system. The rm command by itself, with no switches, does not remove directories, but
the rm command with the -rf switches removes directories and their subdirectories. Make sure you
know exactly where in the directory structure you are (use the pwd command) before using rm and,
when possible, use the absolute path to ensure you know exactly what you are deleting. Here’s an exam-
ple: Your file system is getting full and you have to make room on the system right away. You run the
ls -l command on the /var/log/archives directory (you have backups of everything, of course) and
decide to remove any extra logs on the system. You go to your root terminal that you thought you ran
the ls -l command in and run the following command:

rm -rf *

73

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 73

It turns out you were in the wrong terminal window — you were currently in the / directory. If you were
logged in as root, you would completely remove all system files and render your system unusable
because the command you ran would recursively remove (-r) all files (*) on the system without
prompting you at all (-f).

Making and Removing Directories
The mkdir and rmdir commands deal specifically with directories. mkdir creates a new directory in
which to store files and other directories. Its syntax is mkdir directory_name. To create a directory
called testdir, for example, you would use the command:

mkdir testdir

The testdir directory is stored in your current working directory. If you want to place it in a different
directory, you need to use the absolute path. Here’s how you’d create the directory testdir in the /tmp
directory:

mkdir /tmp/testdir

To remove a directory, use the syntax rmdir directory_name. To remove the testdir created in the
preceding example, use the command:

rmdir /tmp/testdir

As with rm, you can cause significant damage by not being aware of where you are in the file system and
by running commands as the root user, although the consequences aren’t quite as severe because of limi-
tations in the rmdir command.

rmdir removes completely empty directories only, providing some safeguards against accidentally
deleting directories containing files and other directories.

Basic File System Management
Like any storage medium, file systems can fill up to capacity, creating tremendous problems if not man-
aged properly. The first way to manage your partition space is with the df (disk free) command.
(Partitions were discussed earlier in the chapter.) The command df -k (disk free) displays the disk
space usage in kilobytes, as shown in Figure 4-6.

74

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 74

Figure 4-6

Some of the directories, such as proc and fd, show 0 in the kbytes, used, and avail columns as well as
0% for capacity. These are special (or virtual) file systems, and although they reside on the disk under /,
by themselves they do not take up disk space. The df -k output is generally the same on all Unix sys-
tems. Here’s what it usually includes:

Column Description

Filesystem The physical file system (fdX (X=floppy drive number) = floppy drive,
/dev/dsk/c0t0d0s0 represents a partition on a disk drive, and so forth).

kbytes Total kilobytes of space available on the storage medium.

used Total kilobytes of space used (by files).

avail Total kilobytes available for use.

capacity Percentage of total space used by files.

Mounted on What the file system is mounted on. In Figure 4-6, the / (root) file system is
mounted on /dev/dsk/c0d0s0 and has only 26% of its total allocated
space available. Mounts are discussed later in the chapter.

The avail and capacity columns are important to track because you don’t want your / (root) or /tmp parti-
tions to fill up, because that will cause serious problems. Every portion of the file system is its own entity;
the / file system is on its own separate physical partition (or device), as is /export/home (the usual loca-
tion for users’ home directories on Sun Solaris’s version of Unix). Even if /export/home becomes full, the
root and other partitions will not, because they are their own entities (discussed in the following section).

75

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 75

You can use the -h (human readable) option to display the output in a format that shows the size in easier-
to-understand notation as shown in the bottom half of Figure 4-7 (the -h option is not available on all ver-
sions of Unix.).

Figure 4-7

The du (disk usage) command enables you to specify directories to show disk space usage on a particu-
lar directory. This command is helpful if you want to determine how much space a particular directory
is taking.

$ du /etc
10 /etc/cron.d
126 /etc/default
6 /etc/dfs
...

The -h option makes the output easier to comprehend:

$ du –h /etc
5k /etc/cron.d

63k /etc/default
3k /etc/dfs

...

One other command you should be familiar with is fsck (file system check). Unix generally uses a
superblock to track the file system, including the size of the file system, free blocks available, and other
relevant information. When the system does not shut down gracefully (such as when it’s powered off
while still in multiuser mode) or when the system crashes, errors are introduced into the block. These
errors could include the system’s marking of blocks as free (meaning they can be written to) when they

76

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 76

are actually in use (which can cause serious data corruption), inode size errors, and other administrative
problems. These cause inconsistencies in the superblock that require repair. The fsck command
attempts to repair them. Because of the potentially disastrous issues surrounding this command,
extreme care should be taken when running it, so refer to its man page for more information.

Making File Systems Accessible
A file system must be mounted in order to be usable by the system. When you boot up your system, the
root directory and any other files you name in /etc/fstab or /etc/dfstab (or any file that identifies
the way that mounts are handled, which differs by Unix variant) are mounted for the system to use.
These mounts generally don’t require user intervention and are usually not visible to the end user.
Mounting a file system means that you are presenting the file system to the system for use. If you want
to use a CD-ROM drive (cdrom) in Unix, for example, the system must mount it to the root file system so
that you can navigate the drive. The cdrom may attach to the root file system via the /mnt directory or
the /cdrom directory. On some systems (Mac OS X, for instance), this happens automatically; on other
systems, you have to issue commands to make the file system available. Take a look at the example file
system in Figure 4-8.

Figure 4-8

The /mnt directory, by Unix convention, is where temporary mounts (such as CD-ROM drives, remote
network drives, and floppy drives) are located. A file called fstab (the filename varies based on Unix
version) identifies all the different file systems that should be mounted during boot-up. For instance, if
you wanted to use a CD-ROM drive, you would need to tell Unix that the new file system had been
added to the primary file system because you would probably want to use more than one CD-ROM
drive over the course of your use of Unix. You do not generally want to have a removable device be part
of the boot-up mounts, because this can cause problems if the device is removed. You need to identify
this new file system to Unix so that it can understand how to interoperate with the medium, and you
also need to identify where on the file system it will be attached (what directory). You use the mount
command, described later in this chapter, to add the CD-ROM drive, and through the options passed,
you can have this file system available as needed. After you mount this file system, the new file system
hierarchy will include cdrom under the /mnt directory, as shown in Figure 4-9.

Figure 4-9

/

/bin /sbin /dev /home /mnt

cdrom

/proc /etc /var

/

/bin /sbin /dev /home /mnt /proc /etc /var

77

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 77

To see what is currently mounted (available for use) on your system, use this command:

mount

The resulting output is similar to that shown in Figure 4-10.

Figure 4-10

The format for output from the mount command is typically broken up into the following columns:

Column Description

Device to be mounted Actual device name; for instance, this is a SCSI CD-ROM.

Mountpoint Location of the new directory in the file system.

Type of file system The file system type — such as msdos, hfs, and iso9660 — tells
the system how to work with the storage medium.

Mount options Mount options associated with the type of file system.

Dump options Used to back up the system (discussed further in Chapter 18).

fsck options For identifying the order of file systems checks during boot.

78

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 78

For example, take a look at the last line of output from the mount command in Figure 4-10:

/dev/ide/host1/bus1/target0/lun0/cd on /mnt/cdrom type iso9660
(ro,nosuid,nodev,umask=0, iocharset=iso8859-1,codepage=850,user=beginningunix

The device to be mounted is /dev/ide/host1/bus1/target0/lun0/cd— that’s the actual name; it’s a
SCSI CD-ROM device. The mountpoint is /mnt/cdrom, and the type of file system is iso9660, which is a
CD-ROM. The options for the device are ro (read only), which means you can’t write to the CD-ROM;
nosuid (no set user ID or set group ID); nodev (don’t interpret character or block special devices for
this file system); umask (discussed in Chapter 6); iocharset (for converting 8-bit to 16-bit characters);
codepage (for converting FAT and VFAT filenames); and user (the username — beginningunix in this
example), who can mount the file system as needed. There are no dump or fsck options for this device.

File systems can be mounted automatically or manually, depending on the Unix system you’re using, so
you may not need to mount them manually. You can run the mount command to see what file systems
are mounted, and if a needed file system isn’t in the output list, then it was not automatically mounted
(assuming no one mounted it between boot and the time you run the mount command). If you need to
mount a file system, you can use the mount command with the following syntax:

mount -t file_system_type device_to_mount directory_to_mount_to

If you want to mount a CD-ROM to the directory /mnt/cdrom, for example, you can type:

mount -t iso9660 /dev/cdrom /mnt/cdrom

This assumes that your CD-ROM device is called /dev/cdrom and that you want to mount it to
/mnt/cdrom. Refer to the mount man page for more specific information or type mount -h at the com-
mand line for help information. After mounting, you can use the cd command to navigate the newly
available file system through the mountpoint you just made.

To unmount (remove) the file system from your system, use the umount (note spelling: only one n)
command by identifying the mountpoint or device. For example, to unmount cdrom, use the following
command:

umount /dev/cdrom

The mount command enables you to access your file systems, but on most modern Unix systems, the
automount function makes this process invisible to the user and requires no intervention.

Summary
The concept of file systems is important because you use them for storing and using applications in your
Unix system. This chapter discussed how to navigate a file system, what the different types of files are,
how permissions work at a rudimentary level, how to view files quickly, and how to work with directories.
The chapter also covered basic file system management and making file systems accessible to the user.

79

File System Concepts

07_579940 ch04.qxd 3/21/05 6:00 PM Page 79

Exercise
Write a command that will set the file permissions of the file samplefile to read, write, and execute for
the owner of the file, and read and execute permissions for the group and for others, using absolute
mode (sometimes referred to as octal mode).

80

Chapter 4

07_579940 ch04.qxd 3/21/05 6:00 PM Page 80

5
Customize Your Working

Environment

An environment variable controls a particular aspect of the Unix environment. That is, environ-
ment variables affect the look and feel of your computing experience, as well as many underlying
actions that you might never notice. You can use environment variables to change almost every
aspect of the Unix experience.

This chapter explains environment variables in more detail and shows you some of the more com-
mon ones. In particular, it focuses on shells, the programs that translate your keystrokes into com-
mands that the operating system can recognize and accept. There are many Unix shells available
today, and the array can be somewhat confusing. You’ll explore the differences and receive sugges-
tions on adopting the shell that will work best for you.

Environment Variables
Unix is incredibly flexible. This can be a delight or a horror, depending on what you’re trying to do.
For most users, the learning curve is steep. However, you can cut away a lot of trouble if you spend
some time defining your environment before you move too deeply into the Unix experience!

The PS1 Variable
Unix behavior can be changed dramatically depending on the value assigned to a particular envi-
ronment variable. For example, the environment variable PS1 controls the top-level command
prompt, or string of characters before the cursor. You see this prompt when you open a terminal
window or after you log in to the console on your machine. The prompt can contain almost any-
thing you want it to, as long as you define the environment variable with the appropriate value.

The following example assumes that you are using either the Bourne or the bash shell environ-
ment, which is usually the case with a default installation. If you issued the command:

PS1=”>”

08_579940 ch05.qxd 3/21/05 6:07 PM Page 81

the top-level command prompt in that shell would appear as:

>

with the cursor following the > character. Pretty simple, yes? What if you issued the command:

PS1=”I am ready to do your bidding, Bob!”

As you can probably guess, the resulting prompt would look like this

I am ready to do your bidding, Bob!

and would immediately be followed by the cursor. While this sort of thing is amusing, it can quickly
grow tiresome. A more useful prompt contains information about your working directory, which is your
current location within the entire file system. This information is critical when you are trying to deter-
mine the path of a particular file. (To learn more about the path, see “Understanding the Path” later in
this chapter.)

Try It Out Configure the Bash Prompt
There are a number of ways in which you can configure your prompt in the bash shell, using the PS1
environment variable. (Although the format differs, the PS1 variable is used in other shells as well.) One
useful configuration displays the working directory in the prompt. To set the value of PS1 so that it
shows the working directory, issue the command:

PS1=”[\u@\h \w]\$”

How It Works
The result of this command is that the prompt displays the user’s username, the machine’s name (host-
name), and the working directory. (It’s useful to include the username so that you can tell whether
you’re logged in as yourself or as another user, especially if you’re the sole system administrator.) Here’s
an example result:

[dave@linux1 /etc]$

There are quite a few escape sequences that can be used as value arguments for PS1; try to limit yourself
to the most critical so that the prompt does not overwhelm you with information.

Escape Sequence Function

\t Current time, expressed as HH:MM:SS.

\d Current date, expressed as Weekday Month Date (or Day).

\n Newline.

\s Current shell environment.

\W Working directory.

\w Full path of the working directory.

82

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 82

Escape Sequence Function

\u Current user’s username.

\h Hostname of the current machine.

\# Command number of the current command. Increases with each new
command entered.

\$ If the effective UID is 0 (that is, if you are logged in as root), end the
prompt with the # character; otherwise, use the $.

Other Environment Variables
Shells take an assortment of environment variables. In addition, should you want to delve deeply into
shell scripting, you can create your own environment variables to serve particular functions in your scripts.
For example, you might create a set of variables that defines prompts for your users based on how much
disk space they have used. This is not a standard shell variable, but it’s easy to think of situations where
it might be useful, especially if you have a teenager prone to downloading vast amounts of music or
video files and clogging up the family hard drive!

To learn more about shell scripts — text files used to automate various shell functions — see Chapters
13 and 14.

Environment variables also differ based on the shell environment you’ve chosen. While most shells have
variables that fulfill the same purposes, you might find them under slightly different names in different
shells, or the variable with an identical name might take a different syntax in another environment. In
“Configuring Your Shell” later in this chapter, you’ll take a look at some of these unique environment
variables.

Some users work with Unix for many years without doing much to their environment variables. Other
users dive right in, not feeling fully at home until every possible variable is tinkered with and config-
ured to the finest degree. Most of us fall somewhere in the middle, configuring a favorite text editor or
mail client, perhaps changing the prompt, and making a few other small changes that help create a more
familiar and comfortable computing environment.

Understanding the Path
As you learned in Chapter 4, every element on your Unix machine is considered to be a file. That is, the
operating system treats all commands and executable programs in the same manner that it treats an actual
file. This is a tough concept for some folks to grasp, especially if you come from a purely GUI environ-
ment such as Microsoft Windows. However, in the long run, treating everything like a file makes it eas-
ier to administer a Unix system.

The root directory is known by the character /.

83

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 83

The thing to remember about Unix and the way it handles files is that each file, whether it be command,
program, or static document, has a unique location. This location is called its full path name, and it speci-
fies the file’s unique place within the entire file system. For example, the command ls (used to list files)
usually has the full path name /bin/ls. This means that the ls command is usually stored in the /bin
directory, which is stored in the first level of directories below the root directory. The full path name
compresses the specific file tree into a single line, but you can also think of the path name as represent-
ing this progression:

/
bin

ls

Using full path names has its advantages. In particular, it’s a great way to learn your file system and to
remember a file’s specific location. However, full path names can be rather tedious in regular use, espe-
cially if you’re working with programs and documents that are stored deep within a nested directory.
Imagine that you are writing a new program and that this program’s executable file is located in a sub-
directory of your home directory. To execute this file, you’d have to type a full path name like this:

/users/home/susan/MyProg/prog

In the process of writing and debugging your program, you might type this command hundreds of times.
That’s a lot of wasted keystrokes and physical effort, not to mention that it increases the possibility of
typing errors.

Another problem with full path names is that you might want to use a particular program but you don’t
know where it’s located on this particular system. For example, the oldest of old-school Unix types still
use an e-mail program simply called mail. This program could be found in /bin/mail or at /usr/bin/
mail or even somewhere completely nonstandard, all depending on how the system administrator
decided to structure the file system. If you’ve just installed a new flavor of Unix and used the default set-
tings, the installer might have put mail someplace that you weren’t expecting. The end result is that you
spend a lot of time and effort searching through the file system so that you can issue the correct full path
name and, eventually, get into your e-mail.

The PATH Environment Variable
There is a common solution to all of these problems. The PATH environment variable contains a list of direc-
tories where executable files might be located. If a directory is listed in the PATH variable’s value, that direc-
tory’s name does not need to be typed to invoke an executable file that resides in it. For example, if the mail
program is stored in /usr/bin/ and /usr/bin/ is part of PATH’s value, you can simply type mail at the
command prompt to invoke the program, instead of using the complete path /usr/bin/mail.

In Unix terminology, to invoke a program is to call it into operation.

The value of the PATH variable is usually set at the system-wide level in a configuration file such as
/etc/profile. Most standard Unix systems have certain common directories listed there as a matter of
course. In addition, the installation procedures for many large software packages (such as the Mozilla
Web browser) automatically add directories to the path so that they can be easily found.

You can add your own values to the PATH variable. When you invoke a shell environment, the shell’s
configuration files — both global and user-specific — are executed, and any additional values that you
want to add to the PATH variable’s value can be added to the shell configuration file.

84

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 84

In the Bourne and bash shells, the format for appending values to the PATH variable is this:

PATH=$PATH:new value

So, if a user called joe wants to add his home directory /home/joe to the path, he would do so in this
manner:

PATH=$PATH:/home/joe

Multiple directories can be added as a colon-separated list:

PATH=$PATH:/home/joe:/home/joe/myprog:/home/joe/myprog/bin

In addition, the user can add the command:

export PATH

to the initialization file. This causes the new values of the variable to be available outside of that particu-
lar iteration of the shell. This is useful for people using multiple shells or using graphical interfaces and
the like.

While most users do not need to worry about the order in which directory names are added to the value
of PATH, there are times when the order is important. For example, assume that you have two programs,
each in a different directory but both having the same name. If you invoke the program by issuing its
name at the command prompt, the shell will look at the files in the PATH directories in order. As soon as
the shell finds the correct program, the program will start, no matter whether it’s the program you
intended to invoke. To invoke the other program with that name first, you need to issue the complete
path name at the prompt.

The dollar sign at the beginning of the PATH statement alerts the shell that the new directory, or value,
is to be appended to the current value of PATH rather than replacing it. If you issue the command as
PATH=PATH:/usr/sbin, for example, the value of PATH will include the relative directory PATH as
well as the full path name /usr/sbin. If you issue the command as PATH=$PATH:/usr/sbin, the
/usr/sbin directory will be added to the directories already included in PATH’s value.

If you have recently changed the value of PATH and suddenly cannot invoke programs with the simple
command name, you may have missed the $ while issuing the command. You will need to determine
and reconfigure the correct value for PATH.

Relative and Absolute Paths
When working with full path names, it’s important to understand the difference between relative and
absolute paths. In a Unix environment, all paths are named relative to the root directory, /. Thus, as pre-
viously explained, /bin is a subdirectory of /, and /bin/appdir is a subdirectory of /bin, making
appdir a third-level directory. The full path name /bin/appdir is also an absolute path name, because
it contains all the elements of the tree structure from / to the ultimate destination.

However, you don’t need to use the absolute path name every time you want to move through the file
system. All you need to know is the destination and the starting point — your current working directory.
If you followed the directions earlier in this chapter, you already have the current working directory
conveniently displayed in your prompt.

85

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 85

Assume that the current working directory is /bin. To move to the appdir subdirectory using the cd
(change directory) command, you could issue the absolute path, as in

cd /bin/appdir

But you’re already in /bin, so why add extra keystrokes? Just issue the command:

cd appdir

A directory name given without an absolute path is always assumed to be relative to the current direc-
tory. If, for example, the appdir directory contained a subdirectory called dir1, you could move there
from /bin with the command

cd appdir/dir1

Note that there’s no slash preceding the relative path.

The relative path works regardless of the number of levels in the path. If your working directory is dir1,
the relative path:

dir2/dir3/dir4

still means:

/bin/appdir/dir1/dir2/dir3/dir4

The deeper you delve into the file system, the more useful the relative path becomes.

Moving around the File System
Apart from the use of absolute and relative path names, Unix uses some shorthand notations for com-
mon directory functions. These conventions make it easier to understand your location in the file system
as a whole.

❑ The current directory is represented by a single dot (.). If you want to specify a file in the cur-
rent directory (for example, if it is an executable file, but not in PATH), you can reference it as
./myfile.

❑ Likewise, the parent directory of the current directory is represented by a double dot (..). If the
current directory is /bin, and you issue the command cd .., you move to the root directory, /.

❑ A user’s home directory is represented by the tilde (~). No matter where you are in the file sys-
tem, the command ls ~ produces a listing of the files stored in your home directory.

Choosing a Shell
Although many Unix systems may seem barebones and identical, there are subtle variations that affect
your ultimate user experience. One of the most basic configurations is the choice of a shell environment.
A shell is a program that lies between you (the user) and the kernel of the operating system. When you

86

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 86

issue commands or type at the prompt, you interact with the shell. In turn, the shell translates your com-
mands and keystrokes into something the kernel can understand. The kernel responds, and then the shell
presents the output to you.

On a typical Unix system, several shells are installed by default and are available to you. Generally, shell
choice is a matter of personal preference. When a system administrator creates a new user account, she
assigns a default shell. The user can change the shell at a later point if the default is unacceptable, but
the vast majority of users stick with the default shell whether it is the most appropriate environment for
them or not. If you are your own system administrator, choosing a shell is simple; just set the one you
want when you create your account, as described in Chapter 3.

Why would you want to change your shell environment? Perhaps you don’t like the prompt style in a
particular shell. You might have years of experience with a particular programming language and want
an environment that structures commands in a similar fashion. You could be fascinated with the automa-
tion possibilities of shell scripting and want a shell that makes this process as easy as possible. You
might change shells like shoes, using one for certain kinds of work and another for different purposes.
It’s easy to change between shells, whether temporarily or permanently.

Changing a Shell Temporarily
It’s easy to change the shell environment for a single user session, or even for a mere two or three com-
mands, and then return to your regular shell of choice. To do so, simply issue the desired shell’s name as
a command. For example, if your default shell is bash and you want to use tcsh, simply type:

tcsh

at the shell prompt. If the directory where tcsh is stored is not part of the value of your PATH environ-
ment variable, however, you will need to issue the full path name, usually:

/bin/tcsh

That’s all it takes! When you’re ready to return to your default shell (bash, in this example), just type:

exit

at the shell prompt. This is the best way to try out new shells or to switch between shells for specific pur-
poses. Even if you log out while in the new shell environment, your default value will apply when you
log in again.

The only downside is that you must issue the proper command every time you want to use the new
shell in a new session. If you have bash set as your default shell and yet find that you end up doing most
of your work in tcsh, you might prefer changing the default shell environment, as shown in the next sec-
tion. For those users who work in a number of shells in one session, however, invoking particular shells
only as needed is a quicker way to manage the environment.

Changing the Default Shell
If you have a favorite shell that is not the default shell on your account, you have two options: change
the shell each time you log in, using the method described in the previous section, or change the default

87

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 87

shell permanently. For the latter, you change the value of the variable that controls shell selection, so that
the new shell is invoked each time you log in. That state will persist until you change the default shell
again.

To change the default shell, use chsh, the command to change shell. At the command prompt, type:

chsh

You are prompted for your password and for the new shell’s name. Enter this information, and the new
shell is established as the default. To switch shells between the new and old versions, you still need to
enter the shell name as a separate command.

chsh is not valid on every system. You might try the passwd program with the -e or -s flags, as in
passwd -e or passwd -s. If these also fail, contact your system administrator for help.

Which Shell?
While most users understand the need for a shell environment, many are stymied by the range of shell
options. There are a number of Unix shells, some of which are used extensively and some of which are of
interest or use only to their creators. Each of these shells has its own pluses and minuses, and you can
drive yourself crazy trying to figure out which one shell will be the ultimate solution for your particular
situation.

Relax! Most Unix users end up with a small number of shells that they use for different purposes. Your
main shell will be the one you are most comfortable with, but you might want to work with a different
shell for programming, or even use a particular shell for games or to otherwise blow off some steam and
relax. This section introduces the most popular Unix shells and shows you the basics of each and why
you might want to give each one a try.

Bourne Shell
No matter what Unix variant you use, you’ve probably got a version of the Bourne shell somewhere on
the system. Bourne was the original Unix shell, and has changed little over the years. In fact, the most
prevalent Bourne tutorial on the Web is one that was originally written in 1978 for Bourne version 4.3.
The only major difference between the original and the current Bourne documentation is that the newer
files have been formatted with HTML.

You can find this tutorial, written by Steve Bourne himself, at http://steve-parker.org/sh/
bourne.shtml.

Depending on your perspective, you may find the Bourne shell to be an elegant, lean environment, or
you may think it’s painfully lacking in modern convenience and ease. Whether or not you choose to use
Bourne on a regular basis, take the time to become familiar with its rudiments. Should you be in a situa-
tion where your machine is locked down to the bare minimums — such as with a rescue disk — Bourne
may be the only shell environment available to you. It would be better to know how to use it before such
a crisis occurs.

That said, many system administrators like to use Bourne for shell scripting. Bourne, like all shells, is a
command language as well as a user environment, and shell scripts can be an easy way to automate many

88

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 88

ordinary administrative routines without having to build complex programs and learn new programming
languages. There is a vast amount of information on Bourne shell scripting available in books and online.
While newer shells with more features make ongoing user interaction easier, Bourne still holds its own in
the world of streamlined shell scripting.

Invoke the Bourne shell with the sh command. The default Bourne prompt ends with the $ symbol, fol-
lowed by the cursor; if you are logged in as root, you see the # character instead of the $. The Bourne
shell parses two configuration files as it starts:

❑ /etc/profile— A global configuration file for Bourne-family shells.

❑ .profile— A file, stored in your own home directory, containing the specific configurations
you want for shell activity in your own account. This file is also for Bourne-family shells.

Learn more about using these files in “Configuring Your Shell” later in this chapter.

Ash
Some systems may run the ash shell instead of true Bourne. Originally created by the NetBSD develop-
ment team, ash is a lightweight Bourne clone that takes up a lot less disk and memory space than Bourne.
It’s particularly useful for machines with less memory or smaller drives. Although it lacks some of the
standard Bourne features, such as a history file of recently issued commands, it is a completely func-
tional shell environment. Should you be running a bare-bones Unix box that doesn’t have a lot of room
for fancy software, especially if you’re running a BSD variant, consider installing ash. You can download
ash packages or source code from most online software repositories if you didn’t get them as part of
your operating system.

Bourne Again SHell
Although the original Bourne shell is on almost every Unix system in the world, it’s not always the
friendliest shell on the disk. Enter bash, which is Bourne-like but not a Bourne clone. The bash shell was
originally written as the shell environment for the GNU operating system, a Unix-like operating system
that includes only royalty-free code (and therefore cannot technically be called a Unix variant — in fact,
GNU stands for “GNU’s Not Unix”). To meet the philosophical demands of the GNU project, developers
built a shell that mimicked sh’s scripting capabilities, and they called it the Bourne Again SHell, or bash.

Bash was originally intended as a drop-in replacement for Bourne, but it has been continuously devel-
oped over the past several years and now includes many features — ranging from user-interface tools to
a more advanced scripting language — that are not found in the original Bourne shell.

Most Bourne shell scripts will run under bash with no modifications. As a result of the changes in
bash’s native language, however, the reverse is not always true. You may need to do some tinkering
before you can run bash scripts in a pure Bourne environment.

The bash shell is extremely popular, especially among those who originally learned to script in the
Bourne shell but wanted better user-interface tools, and has been ported to almost all Unix variants. You
probably have a bash shell on your Unix machine, and it might even be the default shell environment. It
is certainly worth a try, even if you don’t want to do a lot of shell scripting. The multiple features of this
shell are attractive to users at any level:

89

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 89

❑ Bash offers environment variables to configure every aspect of your user experience within the
shell.

❑ The command history enables you to scroll back through previous commands, whether to save
keystrokes in repeating a command or to identify the source of a problem.

❑ Bash offers built-in arithmetic functions, both integer arithmetic commands at the command
line and arithmetic expressions for your shell scripts.

❑ Wildcard expressions help you find the exact name of a program or see all the files with a partic-
ular string in the filename across the system. You can also use wildcards with commands to exe-
cute an operation on multiple files.

❑ Command-line editing lets you use Emacs and vi (text editors) commands to make edits at the
prompt without opening a file.

❑ Bash has a long list of built-in commands that make machine administration much easier, many
of which can be used both at the command line and within a script. (Learn more from the bash
manual page, which you can find by issuing the command man bash at the command prompt.)

Korn Shell
The Korn shell, invoked with the ksh command, is another member of the Bourne shell family. This shell
is also extremely popular and has adherents as devoted as those who prefer bash. However, the line
between the two shells is somewhat blurry because bash incorporates many features of the Korn shell,
including arithmetic functions and command-line editing configurable to resemble Emacs or vi.

If you plan to do a lot of shell programming, the Korn shell may be a good choice for you. It has a good
selection of programming features, including the capability to build menus for your shell scripts and the
use of array variables. Array variables are indexed lists of multiple values for a single variable. The com-
bination of advanced arithmetical calculations and arrays means that Korn shell users can build shell
scripts with surprising sophistication. In fact, the newest version of ksh has functions found in a variety
of popular programming languages, including Tcl, Icon, AWK, and Perl, but with an easier interface.

You may not have the Korn shell available on your default installation. You can download the latest ver-
sion from AT&T at http://research.att.com/sw/download. FAQs and installation help are available
at http://kornshell.com, along with sample scripts and extensions to use with Tcl or Motif scripts.

For some users, the open source nature of a program is a critical component of software choice. The
Korn shell has not always been open source, although AT&T now releases it as such. If you would prefer
a ksh clone that is a true open source shell environment, consider pdksh, the Public Domain Korn Shell.
Unfortunately, because pdksh is a volunteer project, it does not have the same development schedule
as the Korn shell, so the current release is less feature-rich than the current ksh release. Still, if you’re
serious about maintaining a 100 percent open source machine, give pdksh a try. Learn more at
http://web.cs.mun.ca/~michael/pdksh/.

Z Shell
The Z shell (zsh) is a relative newcomer to the Unix world, having only been on the scene since about 1990.
Still, 14 years is a long time in the world of computer science, and zsh is a mature shell environment, cur-
rently at version 4.2.0. Of all the Bourne-related shells, the Z shell is most like the Korn shell. In fact, Korn
users will find the migration to Z almost seamless. That said, the Z shell bears similarities to almost every
major shell environment now available. The configuration options are stupefying, and if you are willing to
put in the time, you can probably get the Z shell to behave in whatever super-specific way you desire.

90

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 90

Although the Z Shell does many of the things found in the C shells, be aware that it is built on a Bourne
base and thus tends toward sh syntax and procedure.

The Z shell is stuffed full of features and options. If a user, somewhere, has wanted to do something in a
shell, it’s probably possible under Z. The advantage, obviously, is that Z can do a great many things. The
disadvantage lies with you — you may not want a shell that has so many options or functions. Think of
zsh as a top-of-the-line automobile, sewing machine, or PDA that has every bell and whistle on the mar-
ket. If you spend 90 percent of your time commuting 10 miles to work on the same road, you don’t need
all the fancy off-road or child-friendly items. If you spend that 90 percent taking your kids into the back-
country, however, you’ll probably push the limits of the car a lot further. Even if you only fantasize about
those off-road trips, you might want to have the gear for the possibilities. The Z shell is like that.

Depending on the age of your operating system packages, you may not have the latest version of the
Z shell; version 4.2 was released in August 2004. Visit http://zsh.org and select the mirror site
most convenient for you. All mirrors host the latest Z shell packages, along with documentation and
links to important online documents, like the FAQ and the user guide.

C Shells
Fluent in C? Need a shell environment that understands those C-flavored commands? The C shells csh
and tcsh might be the right shells for you. At the basic user level, there’s not a huge difference between
the C shells and those related to the Bourne shell. Once you begin to work with environment variables
and shell scripts, however, you’ll quickly begin to see a divergence between the two shell families.

The programming syntax used in the C shells is derived from the C programming language. Not sur-
prising, C devotees are usually also C shell devotees. If you’re used to working with C syntax, these
shells will be a breeze for you, especially as you move into shell scripting. If you are unfamiliar with C,
you might find yourself quite confused in some situations where the C syntax differs from traditional
sh-style commands. For example, Bourne-based shells use this syntax to define an environment variable:

VARIABLE = value

In the C shells, environment variables are defined with the command:

setenv VARIABLE value

Thus, the Bourne-style command EDITOR=”pico” would be expressed as setenv EDITOR pico in a
C shell.

More than once we’ve heard from frustrated users who can’t seem to get their shells
to behave properly. In most cases, the user has somehow gotten himself into a shell
of a different family, whether by invoking the shell or through the default software
decisions made by a system administrator. If you’re trying to issue Bourne-style
commands and they don’t work, chances are that you’re in a C-type shell. The oppo-
site is also true; if you’re trying to set a variable using setenv and it won’t stick,
you’re probably in a Bourne-type environment. To get to the shell you want to use,
invoke it with the appropriate command or ask your system administrator to install
the shell package if it is not already on the system.

91

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 91

The basic C shell, csh, has multiple basic functions, including filename completion, wildcard substitution,
and some useful administrative tools such as job control and history substitution. Tsch, an enhanced
version of csh, offers even more flexibility. Under tcsh, you find configurable command-line editing,
command completion, an excellent method of directory parsing, and a large number of environment
variables specific to the shell. With tcsh, you can also use the arrow keys on your keyboard to traverse
the command history, a function that is common in more modern shells but isn’t available by default in
the older shell environments.

You probably have one or both of the C shells in your Unix default installation. If you need to download
or upgrade your C shells, visit your distribution’s download site for C packages and source code. You
can also check http://tcsh.org for tcsh packages and documentation.

Perl Shells
Because Perl is such a popular programming language, it’s not surprising that a few enterprising Perl
wranglers have attempted to build Perl shells. These efforts are ongoing, but haven’t yet resulted in a reli-
able shell that can serve as a sturdy replacement for one of the shells listed above. Still, if you like hacking
Perl, you might enjoy having a Perl-based shell on your machine to take advantage of Perl’s interpreter
and regular expression rules. There are two Perl-based shells in somewhat active development:

❑ psh — The Perl shell psh is now in version 1.8. You can download the current version at
http://gregorpurdy.com/gregor/psh/.

❑ Zoidberg — A modular Perl-based shell that is far more experimental. It is not yet up to a 1.0
release, so it’s definitely beta software. However, the concept is intriguing, melding the conve-
nience of Perl modules with a regular shell environment. Learn more at http://zoidberg.
student.utwente.nl/index.plp.

Available Shells
Not every system has every shell installed on it. Most systems generally have at least one variant of
the Bourne shell: the actual Bourne shell (sh), the GNU Bourne Again SHell (bash), or the generic
public domain Bourne clone (ash). No matter which Bourne variant is installed on your machine, it’s
likely linked to the name sh, which can be used as the command to invoke a Bourne work-alike shell
environment.

In addition, many Unix default installations include some flavor of C shell: either csh, the original C
shell, or tcsh, the GNU work-alike. Search through the /bin directory and other likely locations to see
whether you have additional shell options, such as ksh, the Korn shell. You may even find rarer shells
such as the Z and Perl shells. You probably won’t find these on many stock systems, but you may want
to download the packages and give them a try.

Shells for Fun
Really want to waste some time in the shell environment? Consider the odd subculture of game shells,
shells written to emulate popular text-based Unix games like adventure or multiuser dungeon games
(MUDs). These shells aren’t designed for actual work, but common Unix commands invoke particular
actions on the part of the game characters.

92

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 92

There are three shells written to emulate the adventure game: advshell, advsh, and nadvsh. Advshell is
the original, written as a sh script. Advsh is written in C, and nadvsh (the New Adventure Shell) is writ-
ten for bash, ksh, and zsh. These shells don’t require additional libraries and tend to run cleanly. For
more information, check out the project homepages:

❑ Advshell and advsh: http://ifarchive.org/if-archive/shells/

❑ Nadvsh: http://nadvsh.sourceforge.net/

Perhaps you’re not much of an adventure player, or you’ve devoted far too many hours to your favorite
hack ‘n’ slash MUD to learn something new. The mud-shell might be right up your alley! This shell is
written in Perl and is actually comprehensible as a regular shell environment, albeit one in which you
might be eaten by a grue. Learn more at http://xirium.com/tech/mud-shell/.

Configuring Your Shell
After you’ve selected a shell environment, you will probably want to configure it. There are four main
elements of shell configuration, and you may use any or all of them in any combination to make your
environment perfect for you:

❑ Run control files

❑ Environment variables

❑ Aliases

❑ Options

In this section of the chapter, you learn more about each of these elements and see samples that illustrate
their use.

Run Control Files
Run control files are executed as soon as the shell boots up, whether at the moment you log in to your
account or the moment at which you invoke the shell with a command issued at the prompt. When the
shell starts, it parses all applicable run control files. The first run control file that the shell checks is a
global configuration file. Depending on the shell, more than one global configuration file may be used,
with one file defining global settings, one controlling the login shell, and possibly another defining sub-
shell processes. After the global configuration file or files are parsed, the shell then parses any existing
personal configuration files stored in your user account. As with global configurations, you may have
more than one level of personal configuration file.

The following table shows the various run control files for popular Unix variants. Files in this table are
both global and personal run control files.

Different versions of Unix call their shell initialization files differently. The examples in this text
may not match your system’s methods exactly. Consult your local shell documentation if you have a
question.

93

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 93

Shell Configuration File File Purpose

bash /etc/bashrc Global configuration.

/etc/profile Global configuration for login shells.

~/.bash_profile User’s personal configuration file for
login shells.

~/.bashrc User’s personal configuration file for
all subshells.

~/.profile User’s personal configuration file for
all login shells. This file is read if
~/.bash_profile does not exist.

sh & ash /etc/profile Global configuration.

~/.profile User’s personal configuration.

ksh & pdksh /etc/profile Global configuration.

~/.profile User’s personal configuration.

zsh /etc/zshenv Global first configuration file.

/etc/zprofile Global login shell configuration.

/etc/zshrc Global second configuration file.

/etc/zlogin Global login shell configuration.

/etc/zlogout Global cleanup file.

$ZDOTDIR/.zshenv User’s personal first configuration file.

$ZDOTDIR/.zprofile User’s personal login shell
configuration.

$ZDOTDIR/.zshrc User’s personal second configuration
file.

$ZDOTDIR/.zlogin User’s personal login shell
configuration.

$ZDOTDIR/.zlogout User’s personal cleanup files.

psh ~/.pshrc User’s configuration file. (There is
no global configuration file under the
Perl shell.)

csh & tcsh /etc/csh.cshrc Global configuration.

~/.csh.login User’s personal login configuration.

Readers interested in the Z shell are encouraged to read the documentation carefully. $ZDOTDIR is a
variable that controls where the user’s personal files are. If it is undefined, the user’s home directory will
be used.

94

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 94

Global Configuration Files
When the shell environment begins to run after your initial login, the first configuration it parses is the
global configuration file, should one be required for the default shell. /etc/profile is a Bourne family
shell configuration file containing global settings that affect every account on the machine. This file usu-
ally controls the way in which files are exported, the default terminal type, and the messages that indi-
cate new e-mail has arrived for a particular user. /etc/profile is also used to create a umask, the default
set of permissions that apply to new files at the time each file is created.

On a well-configured system, only those with root access can modify /etc/profile. Remember that
every setting in this file affects every user of Bourne family shells, and that this file is invoked before a
given user’s personal preferences file. It’s usually best to keep /etc/profile lean and controlled so
that logins don’t take forever to finish. /etc/profile files running under Unix variants look remark-
ably similar even with individual configurations. Following are a few examples of /etc/profile from
different flavors of Unix to show you the similarities and differences.

Ash /etc/profile
The ash /etc/profile file is basic and doesn’t define many global settings:

PATH=”/bin:/usr/bin:/sbin:/usr/sbin:/usr/local/bin:/usr/X11R6/bin”
exec `set -o vi`
ulimit -c 0
if [`id -gn` = `id -un` -a `id -u` -gt 14]; then
umask 002
else
umask 022
fi
USER=`id -un`
PS1=”# “
LOGNAME=$USER
HISTSIZE=1000
HISTFILE=”$HOME/.history”
EDITOR=mp
INPUTRC=/etc/inputrc
TERM=linux
NNTPSERVER=”news.comcast.net”
GS_FONTPATH=”/usr/X11R6/lib/X11/fonts/Type1”
export PATH PS1 USER LOGNAME HISTSIZE INPUTRC EDITOR TERM NNTPSERVER

Note the short value of PATH, which includes only the common binary directories.

Red Hat Linux /etc/profile
This /etc/profile comes from a Red Hat Linux machine that uses bash as the default shell:

/etc/profile

System wide environment and startup programs
Functions and aliases go in /etc/bashrc

if ! echo $PATH | /bin/grep -q “/usr/X11R6/bin” ; then
PATH=”$PATH:/usr/X11R6/bin”

fi

95

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 95

ulimit -S -c 1000000 > /dev/null 2>&1
if [`id -gn` = `id -un` -a `id -u` -gt 14]; then

umask 002
else

umask 022
fi

USER=`id -un`
LOGNAME=$USER
MAIL=”/var/spool/mail/$USER”

HOSTNAME=`/bin/hostname`
HISTSIZE=1000

if [-z “$INPUTRC” -a ! -f “$HOME/.inputrc”]; then
INPUTRC=/etc/inputrc

fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

for i in /etc/profile.d/*.sh ; do
if [-x $i]; then

. $i
fi

done

unset I

As you can see in line 4, aliases and other functions are stored in the /etc/bashrc file, another global
configuration file specific to bash. The file is laid out much like a shell script, with sections that contain
if-then programming constructs. However, it’s still a relatively simple global configuration file.

A Cross-Unix Generic /etc/profile
If you work on a number of Unix variants and dislike having to remember all the different quirks of each
flavor’s command-line environment, check out the generic /etc/profile at http://bluehaze.com.au/
unix/eprofile. It creates a common command-line environment across Solaris, SunOS, HP-UX, Linux,
and Irix: that’s every major commercial Unix plus Linux. Pretty impressive!

The /etc/profile file itself would cover nine pages in this book, so it isn’t included here. However, it’s
well worth looking at, if only for ideas. It is particularly well-commented, with good explanations for
every block of code and hardly anything extraneous. In short, this file is an excellent introduction to
/etc/profile and its myriad uses. Check it out.

/etc/bashrc
If you decide to run bash (the Bourne Again SHell), you may want to configure an additional global
run control file, /etc/bashrc (or /etc/bash.bashrc, depending on your Unix variant). Like /etc/
profile, /etc/bashrc defines particular characteristics of a bash user session. It controls the default
configuration for all users of the bash shell on the system, and therefore should have permissions set so
that only an administrator can edit it.

96

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 96

The /etc/bashrc file can look quite different depending on the flavor of Unix in question and the
controls already placed in /etc/profile. Many administrators store the main configurations in /etc/
profile and keep /etc/bashrc quite short, with only bash-specific edits. For example, here is the
/etc/bashrc file from a BSD installation:

System-wide .bashrc file for interactive bash(1) shells.
PS1=’\h:\w \u\$ ‘
Make bash check it’s window size after a process completes
shopt -s checkwinsize

This file has only two functions: defining the bash prompt and checking window size. Everything else
about shell environments on this system is controlled by /etc/profile so that those values will apply
no matter what shell is in use.

On a Red Hat Linux system, /etc/bashrc looks a little different:

/etc/bashrc
System wide functions and aliases
Environment stuff goes in /etc/profile

by default, we want this to get set.
Even for non-interactive, non-login shells.
if [“`id -gn`” = “`id -un`” -a `id -u` -gt 99]; then

umask 002
else

umask 022
fi

Here’s where I ask you to put the “umask 022” line to override previous

are we an interactive shell?
if [“$PS1”]; then

if [-x /usr/bin/tput]; then
if [“x`tput kbs`” != “x”]; then # We can’t do this with “dumb” terminal

stty erase `tput kbs`
elif [-x /usr/bin/wc]; then

if [“`tput kbs|wc -c `” -gt 0]; then # We can’t do this with “dumb”
terminal

stty erase `tput kbs`
fi

fi
fi
case $TERM in

xterm*)
if [-e /etc/sysconfig/bash-prompt-xterm]; then

PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm
else

PROMPT_COMMAND=’echo -ne
“\033]0;${USER}@${HOSTNAME%%.*}:${PWD/$HOME/~}\007”’

fi
;;

screen)
PROMPT_COMMAND=’echo -ne

“\033_${USER}@${HOSTNAME%%.*}:${PWD/$HOME/~}\033\\”’
;;

97

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 97

*)
[-e /etc/sysconfig/bash-prompt-default] &&

PROMPT_COMMAND=/etc/sysconfig/bash-prompt-default
;;

esac
[“$PS1” = “\\s-\\v\\\$ “] && PS1=”[\u@\h \W]\\$ “

if [“x$SHLVL” != “x1”]; then # We’re not a login shell
for i in /etc/profile.d/*.sh; do

if [-r “$i”]; then
. $i

fi
done

fi
fi
vim:ts=4:sw=4

As with the first version of /etc/bashrc, this file is used only for bash-specific functions, and the file
contains a commented-out line that directs the reader to /etc/profile for general environment set-
tings. In particular, this file is primarily concerned with the type of environment in this particular shell
iteration, so that appropriate prompts and functions are available to the user. The file responds differ-
ently to interactive and non-interactive (that is, it is invoked as a dumb terminal) shells.

Personal Run Control Files
The shell also parses personal run control files after it is invoked. However, not every user has a per-
sonal run control file that defines additional configurations for her individual shell environment. For
example, if you’re looking for a personal run control file defined in the table at the beginning of this sec-
tion and you can’t find it, it may not exist. Such files are not created until they are needed. Common set-
tings in personal run control files include more entries in the PATH variable’s value, preferred terminal
settings and colors, font sizes, aliases, and so forth.

Environment Variables
As explained at the beginning of this chapter, environment variables can be used to configure almost
every element of a given shell’s behavior. Whether you configure a great number of variables by hand or
let the graphical configuration tools of your desktop interface define variable values for you, you proba-
bly have a lengthy listing of variables with settings specific to your user account.

You can see the variables defined in any shell on your system with the set command. Simply type set
at the command prompt and press Enter to see output that lists all the variables currently defined on
your system and their values. If a particular variable is not listed in the output, it just has not yet been
defined. Assign a value, and the variable will appear in your next output from set.

The output from set shows you the values of all environment variables defined in the current shell: the
values from /etc/profile, the values from your personal ~/.profile configuration file, any vari-
ables you or other users have defined by hand, and any variables defined by a program as it operates.

98

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 98

To illustrate the different kinds of variables that Unix shells use, the following sections show the set
command issued in three shells: tcsh, bash, and zsh. As you look at the output from each command, you
can see the differences among these shells and their emphasis on configuration through environment
variables.

Tcsh Environment Variables
As you can tell from the output, the following tcsh session is running on a Mac OS X machine. Mac OS X
is based on FreeBSD, and you might be surprised at the Unix experience you can get in a Terminal win-
dow! The variables set for tcsh here are quite limited; the PATH is short, the prompt is generic, and there
aren’t too many unusual variables shown in the output:

% set

addsuffix
argv ()
cwd /Users/joe
dirstack /Users/joe
echo_style bsd
edit
gid 20
group staff
history 100
home /Users/joe
killring 30
loginsh
owd
path (/bin /sbin /usr/bin /usr/sbin)
prompt [%m:%c3] %n%#
prompt2 %R?
prompt3 CORRECT>%R (y|n|e|a)?
promptchars %#
shell /bin/tcsh
shlvl 1
status 0
tcsh 6.12.00
term xterm-color
tty ttyp1
uid 501
user joe
version tcsh 6.12.00 (Astron) 2002-07-23 (powerpc-apple-darwin)

options 8b,nls,dl,al,kan,sm,rh,color,dspm,filec

You can also use the setenv command under tcsh to define environment variables.

Bash Environment Variables
Here is a selection from the environment variables set for bash on the same machine. Note that the out-
put is longer, showing that bash has more bash-specific variables defined in this installation (the /etc/
profile file is the same for both the tcsh and the bash outputs shown in these examples).

99

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 99

$ set
BASH=/bin/bash
BASH_VERSINFO=([0]=”2” [1]=”05b” [2]=”0” [3]=”1” [4]=”release” [5]=”powerpc-apple-
darwin7.0”)
BASH_VERSION=’2.05b.0(1)-release’
COLUMNS=80
DIRSTACK=()
EUID=501
GROUP=staff
GROUPS=()
HISTFILE=/Users/joe/.bash_history
HISTFILESIZE=500
HISTSIZE=500
HOME=/Users/joe
HOST=Joseph-Merlinos-Computer.local
HOSTNAME=Joseph-Merlinos-Computer.local
HOSTTYPE=powermac
IFS=$’ \t\n’
LINES=24
LOGNAME=joe
MACHTYPE=powerpc
MAILCHECK=60

Zsh Environment Variables
Finally, the Z shell environment variables defined on a Red Hat Linux machine are:

$ set
BASH=/bin/bash
BASH_ENV=/home/joe/.bashrc
BASH_VERSINFO=([0]=”2” [1]=”04” [2]=”21” [3]=”1” [4]=”release” [5]=”i386-redhat-
linux-gnu”)
BASH_VERSION=’2.04.21(1)-release’
COLORS=/etc/DIR_COLORS
COLUMNS=80
DIRSTACK=()
EUID=501
GROUPS=()
HISTFILE=/home/joe/.bash_history
HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/joe
HOSTNAME=surimi.nigiri.org
HOSTTYPE=i386
IFS=’
‘
INPUTRC=/etc/inputrc
LANG=en_US
LESSOPEN=’|/usr/bin/lesspipe.sh %s’
LINES=24

The complete Z shell output is much longer than that from tcsh or bash. As mentioned earlier, Z shell
is a feature-heavy shell environment with a vast amount of configurability. That level of flexibility is
reflected in the length of the variable listing.

100

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 100

Aliases
A great way of customizing your working environment is the alias. An alias is simply a way of substitut-
ing one term for another. Aliases are created, unsurprising, with the alias command.

For example, if you are prone to making typographical errors, you might want to require a confirmation
prompt before deleting files. You can do that by using the command rm -i. However, if you’ve condi-
tioned yourself to use the rm command without the -i flag and you find yourself deleting files that needed
to be saved, you might create an alias to stop the problem. You can do this by aliasing the rm command
to the string rm -i. The new function can be invoked by typing the regular rm command.

To create an alias, use this format:

alias rm = “rm -i”

The general syntax is:

alias command = string

If you do this from the command line, the alias will be available only in the current iteration of the shell.
That is, you will lose the alias if you start a new shell or when you log out. To have the alias always
available to you, place the command in your personal shell configuration file.

Aliases function differently in C shell variants than in Bourne variants. For example, the preceding
alias command would be issued as alias rm ‘rm -i’, which uses single quotes and dispenses with the
equal sign, in C shells. Consult your shell documentation if you’re having trouble setting aliases.

Options
Not all shell functions need to run all the time. If your machine’s memory is limited, you may want to
turn off some of the optional shell elements to streamline the process. Different shells have different
options, but all are invoked by issuing the shell command with the added option, as in:

shellname -option

The following table shows some selected options found in popular shells. You can learn more about the
specific options available for your chosen shell by consulting the shell’s manual page (found by typing
man shellname at the command prompt).

Shell Option Function

bash -norc The .bashrc file will not be read when the shell starts
or a user logs in.

-rcfile filename Another specified file will be read instead of .bashrc at
login.

Table continued on following page

101

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 101

Shell Option Function

-nolineediting The command-line editing feature will not function dur-
ing this session.

-posix Only functions that comply with the POSIX standard
will function during this session.

csh/tcsh -e The shell exits if a command causes an error.

-f The shell starts without reading .cshrc or .tcshrc.

-s Take commands from the standard input only.

-t Execute a single command and then exit the shell.

ksh -n Parse commands (read and check for syntactical errors)
but do not execute them.

-f Disable filename expansion (also known as globbing).

-r Start the shell in restricted mode, which does not permit
changing working directory, redirecting output, or
changing basic variable values.

-C Prevents use of the > redirection operator to overwrite
existing files.

zsh -c Takes an argument to the zsh command as the first com-
mand to execute, rather than waiting for input once the
shell has booted.

-v Verbose option (found in most shells) that prints com-
mands to the standard output while they are processing.

Dynamic Shared Library Paths
As a programmer, you will almost certainly need to use some of the standard libraries that have been
built by others over the years. These libraries contain functions that have become standard for program-
mers to use in designing their own code. On most Unix systems, these libraries are included as part of
the basic installation. Indeed, much of Unix itself is built around code that depends on library functions.

This being the case, you must be able to locate libraries already installed on the system and to make your
own libraries available for programs running outside your personal account. On GNU-based systems,
there are a few configuration files that contain lists of directories to be searched for libraries, functioning
like a library-specific version of the PATH variable. Most commonly (on GNU/Linux systems, anyway)
the file is located at /etc/ld.so.conf. FreeBSD systems may have it under /var/run/ls.so.hints
and /var/run/ld-elf.so/hints.

Apple’s Mac OS X, although FreeBSD-based, does not use these files.

102

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 102

LD_LIBRARY_PATH
Should you want to use a nonstandard location for a library file, LD-LIBRARY_PATH is the appropriate
environment variable to use. It works much the same way as PATH, taking a colon-separated list of direc-
tories as its value. This variable is evaluated before the various configuration files are read; if any
libraries with identical names exist in more than one directory, the one in LD_LIBRARY_PATH takes
precedence over the one named in the configuration file.

LD_LIBRARY_PATH does not work on all Unix systems. It works on GNU-derived systems and on
FreeBSD, but on HP-UX, the function is served by the SHLIB_PATH variable. On AIX, it’s LIBPATH.

A number of commentators regard the LD_LIBRARY_PATH variable and its analogs as bad things, at least
as commonly implemented. The reasons for this generally revolve around security issues and the fact
that LD_LIBRARY_PATH can cause confusion if not handled properly. To get a sense of this debate before
you decide whether to implement this variable, visit www.visi.com/~barr/ldpath.html.

Despite the legitimate security concerns, there are valid uses for this variable. The most common reason
to use LD_LIBRARY_PATH is for testing. Suppose that you’re working on a program called myprog,
which uses the libmyprog library. You have a working version of mylib installed at /usr/lib/
libmyprog.so.3., but you want to test your program against a new version of the library. You might
install the new library at /usr/lib/test/libmyprog.so.3. and set LD_LIBRARY_PATH to have the
value /usr/lib/test/. When you run the program, the new version of the library is loaded instead of
the old one. After you have finished testing, you can reset the variable to a null value, assign a new ver-
sion number to the library, and recompile the program with instructions to link to the new version.

LD_DEBUG
Another useful environment variable is LD_DEBUG. This variable causes the C loader to print out verbose
information about what it’s doing. The variable takes several options as values, which can be seen by
setting the value of the variable to help and then running a program. Programmers will find the files
and libs options particularly helpful because they show the libraries accessed during the debug pro-
cess. For example:

$ export LD_DEBUG=help
$ ls
Valid options for the LD_DEBUG environment variable are:

bindings display information about symbol binding
files display processing of files and libraries
help display this help message and exit
libs display library search paths
reloc display relocation processing
statistics display relocation statistics
symbols display symbol table processing
versions display version dependencies

To direct the debugging output into a file instead of standard output
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.
$

103

Customize Your Working Environment

08_579940 ch05.qxd 3/21/05 6:07 PM Page 103

Summary
After you’ve installed a version of Unix and gotten everything in working order, it’s time to configure
your installation so that it suits your needs. Unix is an incredibly flexible operating system, and almost
every element of the user experience is configurable. One of the basic user configurations involves
selecting a shell environment, which acts as a translator between your input and the operating system’s
kernel. You choose a shell and then configure it to your taste with multiple tools.

The basic steps in configuring the user environment to your liking are these:

❑ Review the shells already installed on your system and decide whether one is sufficient or
whether you need to download and install new packages.

❑ Read the documentation for your new shell. Shells tend to be documented exhaustively, from
the basic manual pages to thick books at your local computer bookstore. It’s usually sufficient to
start with the man pages and some Web searching, but if you find yourself intrigued by subtle
configurations or shell scripting, read further in this book or pick up something devoted solely
to your shell of choice.

❑ Review the configuration files established by default when the shell was installed. Is the
/etc/profile file sufficiently personalized? Remember that you need to be logged in as
root to edit global configuration files.

❑ Configure your prompt so that it’s informative and easy to understand.

Exercises
1. Edit the shell prompt to display the date and your user ID.

2. You have installed a new program on your machine, but when you type the command, the pro-
gram does not run. What is the most likely problem?

3. Assume that you want the changes made in Exercise 1 to be permanent. How do you accom-
plish this?

104

Chapter 5

08_579940 ch05.qxd 3/21/05 6:07 PM Page 104

6
Unix Commands In-Depth

Think back to your first computer. Was it a Macintosh? A PC running some version of Windows? If
your computing life started in the world of graphical interfaces, you may find Unix to be some-
what bewildering. However, if you can remember writing tiny BASIC programs on a Commodore
64 or an Amiga, you might think that Unix is a welcome throwback to the days when the monitor
showed nothing but a command prompt.

Long before there were any such things as computer desktops, windows, icons, or mice, there
were text-based terminals and command lines. In fact, Unix was the first operating system that
was machine-independent — before Unix, each machine needed its own personalized operating
system that handled its particular mechanical quirks. Imagine how hard it must have been to
develop a common operating system in the days before mass-produced computers! Since its earli-
est days, Unix has primarily used a command-line interface: a simple prompt, followed by a cur-
sor, using only text. In this kind of environment, there is only one mode of interacting with the
machine, and that’s via commands.

Of course, Unix machines now offer graphical interfaces. Under some Unix variations, the
graphical interface is the default user environment. However, you can always work in a text-only
mode on a Unix machine. In fact, should there be a malfunction or a crash, the text-only environ-
ment may be the only one available to you.

Commands are executable programs. Sometimes they are stand-alone programs, and sometimes
they are functions that are built into the shell. In either case, a command enables the user to
request some sort of behavior from the machine. That behavior can be as simple as listing the con-
tents of a directory or as complex as running a long chain of scripts that set the basic parameters
within which the machine will run. Although you’ve used some of these commands already in the
first few chapters of this book, this chapter delves into the concept of Unix commands and shows
you the basic administrative commands that you’ll use frequently. You’ll also see some ways to
combine commands for output of greater complexity and interest. You’ll revisit some of these com-
mands in later chapters, where you’ll have more opportunity to try them out.

09_579940 ch06.qxd 3/21/05 6:05 PM Page 105

Anatomy of a Command
A Unix command can be broken down into two parts: the command itself and the arguments appended to
it. Most command names are the same as the string of letters that invokes that operation. For example, the
ls command is used to list the contents of a directory. If you type ls at the command prompt, the contents
of the working directory (that is, the directory in which you are currently located) print to the screen:

$ ls
Games Mail resume.txt

Whatever happens when you issue the command by itself at the prompt is called the command’s default
behavior. Commands are far more powerful than the default behavior might imply, however. With the
use of arguments, you can influence the behavior or output of the command. An argument adds addi-
tional information that changes the way in which the command executes. Consider the command:

ls /etc

Here, the command itself is ls. The added /etc portion is an argument that changes the direction of the
command, which will now print the contents of the /etc directory. On a Linux system, the output might
look like this:

$ ls /etc
a2ps.cfg gshadow makedev.d rc6.d
a2ps-site.cfg gshadow- man.config rc.d
adjtime gtk mc.global rc.local
alchemist host.conf mesa.conf rc.sysinit
aliases HOSTNAME mime-magic redhat-release
aliases.db hosts mime-magic.dat resolv.conf
anacrontab hosts.allow mime.types rmt
at.deny hosts.deny minicom.users rpc
auto.master hotplug modules.conf rpm
auto.misc identd.conf modules.conf~ samba
bashrc im modules.devfs screenrc
CORBA im_palette.pal motd securetty
cron.d im_palette-small.pal mtab security
cron.daily im_palette-tiny.pal nmh sendmail.cf
cron.hourly imrc nscd.conf sendmail.cf.rpmsave
cron.monthly info-dir nsswitch.conf services
crontab init.d openldap sgml
cron.weekly initlog.conf opt shadow
csh.cshrc inittab pam.d shadow-
csh.login inputrc paper.config shells
default ioctl.save passwd skel
devfsd.conf iproute2 passwd- smrsh
dhcpc isdn pbm2ppa.conf snmp
dhcpcd issue pine.conf sound
DIR_COLORS issue.net pine.conf.fixed ssh
dumpdates krb5.conf pnm2ppa.conf sudoers
esd.conf ldap.conf ppp sysconfig
exports ld.so.cache printcap sysctl.conf
fdprm ld.so.conf printcap.local syslog.conf
filesystems lilo.conf printcap.old termcap

106

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 106

fstab localtime profile updatedb.conf
fstab.REVOKE login.defs profile.d vfontcap
ftpaccess logrotate.conf protocols wgetrc
ftpconversions logrotate.d pwdb.conf X11
ftpgroups lpd.conf rc xinetd.conf
ftphosts lpd.perms rc0.d xinetd.d
ftpusers ltrace.conf rc1.d yp.conf
gnome lynx.cfg rc2.d ypserv.conf
gpm-root.conf mail rc3.d
group mailcap rc4.d
group- mail.rc rc5.d

Using this argument made it possible for the user ned to view the contents of /etc without leaving his
home directory (see the command prompt in the first line of the code block, which indicates the working
directory).

Chapter 5 explains how to show the working directory in your command prompt.

This type of argument is known as a target because it provides a target location for the command to
work upon. There are other kinds of arguments as well, known variously as options, switches, or flags.
These tend to be specific to a given command, and information about the arguments that work with a
specific command can be found on that command’s manual page. Learn more about man pages in the
next section of this chapter, “Finding Information about Commands,” and in Chapter 2.

Arguments can influence the form of a command’s output as well as its operation. For example, if you
were to issue the preceding command as:

ls -l /etc

the ls command would show the directory listing for /etc in long format, which provides additional
information about the files being listed. Here is partial output for the ls -l /etc command:

$ ls -l /etc
total 1780
-rw-r--r-- 1 root root 15221 Feb 28 2001 a2ps.cfg
-rw-r--r-- 1 root root 2561 Feb 28 2001 a2ps-site.cfg
-rw-r--r-- 1 root root 47 Dec 28 2001 adjtime
drwxr-xr-x 4 root root 4096 Oct 1 2001 alchemist
-rw-r--r-- 1 root root 1048 Mar 3 2001 aliases
-rw-r--r-- 1 root root 12288 Sep 8 2003 aliases.db
-rw-r--r-- 1 root root 370 Apr 3 2001 anacrontab
-rw------- 1 root root 1 Apr 4 2001 at.deny
-rw-r--r-- 1 root root 210 Mar 3 2001 auto.master
-rw-r--r-- 1 root root 574 Mar 3 2001 auto.misc
-rw-r--r-- 1 root root 823 Feb 28 2001 bashrc
drwxr-xr-x 3 root root 4096 Apr 7 2001 CORBA
drwxr-xr-x 2 root root 4096 Mar 8 2001 cron.d
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.daily
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.hourly
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.monthly
-rw-r--r-- 1 root root 255 Feb 27 2001 crontab
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.weekly

107

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 107

-rw-r--r-- 1 root root 380 Jul 25 2000 csh.cshrc
-rw-r--r-- 1 root root 517 Mar 27 2001 csh.login
drwxr-x--- 2 root root 4096 Oct 1 2001 default

See how much more information the -l argument provides? The lengthy output now shows you a lot of
useful data, including each file’s permissions, owner, and creation date.

Flags are usually — but not always — preceded by a dash, or hyphen. The tar command, for example,
takes its flags without a prepended dash. Multiple flags can be used simultaneously, and there is gener-
ally some flexibility as to how they are formatted. Just be careful that you don’t use so many arguments
that the output is difficult to understand.

In addition to accepting multiple arguments at one time, some commands require multiple targets.
Consider the cp command, which makes a copy of a specified file. To use it, you must define both the
file being copied and the file that is the copy. For example, the command

cp /etc/profile /home/joe/profile

makes a copy of the /etc/profile file and names it /home/joe/profile. In this format, /etc/profile
is known as the source, and /home/joe/profile is known as the destination. Not all commands require
both a source and a destination, and, in some programs, leaving out one or the other might cause the com-
mand to assume a source or destination. Always make sure you understand the default behavior of a
command before you use it.

Try It Out Use Arguments to ls
Try this exercise to understand the flexibility of the Unix command syntax. Using the ls command pre-
viously described, add the -a option to include hidden files in the directory listing; hidden files are
those with filenames that begin with a dot, as in .bashrc.

1. At the command prompt, issue the command:

ls -l -a /etc

2. Issue the command:

ls -la /etc

3. Compare the output of the two commands. They are the same.

How It Works
A command produces the same output whether its arguments are combined or added independently.

Finding Information about Commands
Because Unix commands can be so complex, it’s good that there is a source of information already on your
computer to help you navigate the labyrinth of command syntax and arguments. Unix offers several ways
to access information about commands, from simply identifying related files to lengthy informational files.

108

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 108

In this section, you learn three of the most important commands for learning more about the programs on
your machine.

If you don’t have a particular manual page installed on your machine, you may find it in the collection
at http://unixhelp.ed.ac.uk/alphabetical.

man
As you learned in Chapter 2, Unix manual pages (or man pages) are the best way to learn about any
given command. Find a particular manual page with the command man commandname. Manual pages
may be brief, like this one:

$ man apropos
apropos(1) apropos(1)

NAME
apropos - search the whatis database for strings

SYNOPSIS
apropos keyword ...

DESCRIPTION
apropos searches a set of database files containing short
descriptions of system commands for keywords and displays
the result on the standard output.

SEE ALSO
whatis(1), man(1).

Jan 15, 1991 1

(END)

Other manual pages go on for screen after screen. No matter how long they are, manual pages follow the
basic format illustrated in this example. The manual page provides the name, function, syntax, and
optional arguments for a given command.

info
Some programmers include an additional set of help documents, known as info pages, with their pack-
ages or programs. You can access these pages with the info command, such as:

$ info info
File: info.info, Node: Top, Next: Getting Started, Up: (dir)

Info: An Introduction

Info is a program for reading documentation, which you are using now.

To learn how to use Info, type the command `h’. It brings you to a
programmed instruction sequence.

109

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 109

* Menu:

* Getting Started:: Getting started using an Info reader.
* Advanced Info:: Advanced commands within Info.
* Creating an Info File:: How to make your own Info file.

--zz-Info: (info.info.gz)Top, 16 lines --All------------------------------------
Welcome to Info version 4.0. Type C-h for help, m for menu item.

If info pages are not installed on your system, you will not be able to use the info command.

Info pages are generally found with GNU software or software produced by the Free Software Foundation.
While programmers almost always create basic man pages for their programs, not everyone creates the
more detailed info pages. It’s worth trying the info command, though, to see if an info page exists for the
program you want to learn more about.

Be aware that info often triggers the Emacs text editor to display the info pages. If you’re not familiar
with Emacs, it might be quite confusing to navigate through the pages. You can always exit the Emacs
editor by typing C x C c. If that doesn’t work, just press the Q key and you should exit the info viewer.

apropos
Looking for a specific file or a manual page that doesn’t come up when you think you’ve typed the right
command name? The apropos command may be useful to you. It is used with keywords to find related
files. Its syntax is simple — just issue the command:

apropos keyword

Here’s another example:

$ apropos gzip
gunzip [gzip] (1) - compress or expand files
gzip (1) - compress or expand files
zcat [gzip] (1) - compress or expand files
zforce (1) - force a ‘.gz’ extension on all gzip files

The apropos output does not tell you where the files are stored in the file system, but it’s a good way to
find out whether particular packages or commands are installed on your machine before you go search-
ing for them. To find one of these packages, use the whereis command, as in whereis gunzip. You
will see output like this:

$ whereis gunzip
/usr/gunzip /usr/bin/gunzip /usr/share/man/man1/gunzip.1.gz

If apropos does not work for you, you may need to issue the command catman -w. When that com-
mand has completed, try using apropos again.

110

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 110

Command Modification
Unix commands are not limited to the functions performed when the command name is typed at the
prompt. You can use a number of different tools to enhance or alter the function of a command, or to
manage the command’s output. This section explores some of the most popular ways to modify Unix
commands.

Metacharacters
One of the more interesting aspects of using a command-line interface is the capability to use special
characters called metacharacters to alter a command’s behavior. These characters are not part of the com-
mands themselves but are features of the shell that enable the user to create complex behaviors.

The syntax presented here is based on the Bourne and Bourne-derived shells. Most of the features
described in this section are basic to Unix but may be implemented differently in different shells. If
you’re having trouble with metacharacters, make sure you check your shell’s documentation to verify
the appropriate syntax.

The most popular metacharacters are known as wildcards. These are special characters that can be used
to match multiple files at the same time, increasing the likelihood that a command will find the desired
filename or target on the first try. There are three wildcards that are most often used:

❑ ? matches any one character in a filename.

❑ * matches any character or characters in a filename.

❑ [] matches one of the characters included inside the [] symbols.

You can use these wildcards in combination with a command to locate multiple files, or to find a file
when you can’t quite remember its full name. For example, suppose that the working directory contains
the files:

date help1 help2 help3 myprog.f myprog.o

You can add wildcards to the target argument of the ls command to find any or all of these files in a sin-
gle search. The following table shows the various combinations of files that would display, depending
on the wildcard used.

Argument + Wildcard Files Matched

help? help1 help2 help3

myprog.[fo] myprog.f myprog.o

* date help1 help2 help3 myprog.f myprog.o

*.f myprog.f

help* help1 help2 help3

111

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 111

Wildcards are also useful when you are looking for files of a particular type. Many who work in heteroge-
neous environments (that is, a network with Unix, Windows, and Macintosh machines) transfer files cre-
ated with Microsoft Office among multiple machines on the network. Use wildcards to identify all the
Word files in the working directory with the following command:

ls *.doc

Others who work in a heterogeneous environment use pure text files as a common language readable on
all platforms in all sorts of text editors and word processors. If all the text files in the working directory
are identified with the suffix .txt, you could list only those files with the command:

ls *.txt

If you tend to use both .txt and .text as suffixes for text files, wildcards are even more helpful. Issue
the command as:

ls *.t[ex]*

and the output lists all the text files in the directory, regardless of the particular suffix used to name
the files.

If you use asterisks as the first or last character in a wildcard search, you might get many more results
than you expect because the search would also locate temporary and system files. Should you get such a
large number of results that you can’t deal with them comfortably, refine your wildcard and redo the
search.

Metacharacters are an important aspect of regular expressions. You’ll learn more about them in Chapter 8.

Input and Output Redirection
To function, every command needs a source of input and a destination for output. These attributes are
programmed into the commands as a default behavior and are known as that command’s standard input
and standard output. In the vast majority of cases, the standard input is the keyboard, and the standard
output is the screen — specifically, the Terminal window, if you’re using a graphical interface.

In some cases, the standard input and output are defined otherwise. If this is the case for your machine,
you probably already know it. If you sit down at an unfamiliar machine and it has no keyboard, or the
output does not appear on the monitor when you expect it, find the machine’s administrator and inquire
about the input and output settings. You might be attempting to work on a machine of critical impor-
tance that has had its inputs and/or outputs configured to keep stray users from messing things up for
everyone.

While changing the standard input and output permanently is possible, it’s not usually a good idea.
However, you can change the input and output for individual actions. This is known as redirection, and
it’s a great way to streamline a sequence of tasks. With redirection, you can force a particular command
to take input from a source other than the keyboard, or to put the output somewhere besides the monitor.
For example, you might want to set up a program to run without your having to be at the keys to invoke
it, and then to dump its output into a text file that you can peruse at your leisure.

112

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 112

Input and output redirection uses the < and > characters to define the temporary input and output
sources. Suppose that you want to use ls to find the contents of a directory, but you want the output
captured in a text file rather than printing to the screen. To do so, create a file named lsoutput and then
issue the command:

ls > lsoutput

The > character takes the output of ls, which would normally go to the screen, and writes it to the
lsoutput file. (If the specified file does not already exist, the > operator will create it.)

Be careful when you redirect output. If, for example, the preceding command were issued twice, the sec-
ond command would overwrite the contents of the lsoutput file and destroy the previous data. If you
want to preserve the previous data, use the >> operator, which appends the new data to the end of the
file. If the specified file doesn’t exist, or is empty, >> acts just like >. Depending on your typing skill, it
may be safer to build the habit of using >>.

In the same way that > redirects the output of a command, < can be used to change the input. This func-
tion is normally used to build a chain of commands, so that the output of Command A is used as the
input for Command B. It’s a great way to automate administrative functions. For example, assume that
you want to alphabetize a list of terms contained in a file called terms. You can use the sort command
in combination with the input redirection operator <, as in:

sort < terms

In this instance, the sort command will take its input from the terms file rather than from the standard
input.

Input and output redirection can also be combined. For example, the command

sort < terms > terms-alpha

will sort the items in the terms file and then send the output of the sort into a new file called terms-
alpha. As you can see, the complexity of input and output redirection is limited only by the basic logic
of the operation.

A handy tool for programmers, the output redirection operator can be used to redirect only the error mes-
sages produced by a command. This is done by adding a 2 (in the Bourne-derived shells) to the operator.

The Bourne shells use 0, 1, and 2 as file descriptors for output redirection; those readers familiar with C
programming will recognize 0 as stdin (standard input), 1 as stdout (standard output), and 2 as stderr
(standard error).

If you’re working on a program called myprog., for example, and you want to see the error messages
that occur when you run the program, you can issue the following command in your working directory:

myprog 2> errfile

You’d run the program by typing its name at the command prompt, and then open the errfile file in a
text editor to see the error messages generated by myprog. If errfile doesn’t exist, the program gener-
ated no errors.

113

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 113

Pipes
A pipe is an operator that combines input and output redirection so that the output of one command is
immediately used as the input for another. The pipe is represented by the vertical line character (|),
which is usually a shift character located somewhere near the Return or Enter key on your keyboard.
Suppose you want to list the contents of a directory, but the directory’s listing is so long that many of
the entries scrolled off the screen before you can read them. A pipe gives you a simple way to display the
output one page at a time, with the following command:

$ ls -l /etc | more
total 1780
-rw-r--r-- 1 root root 15221 Feb 28 2001 a2ps.cfg
-rw-r--r-- 1 root root 2561 Feb 28 2001 a2ps-site.cfg
-rw-r--r-- 1 root root 47 Dec 28 2001 adjtime
drwxr-xr-x 4 root root 4096 Oct 1 2001 alchemist
-rw-r--r-- 1 root root 1048 Mar 3 2001 aliases
-rw-r--r-- 1 root root 12288 Sep 8 2003 aliases.db
-rw-r--r-- 1 root root 370 Apr 3 2001 anacrontab
-rw------- 1 root root 1 Apr 4 2001 at.deny
-rw-r--r-- 1 root root 210 Mar 3 2001 auto.master
-rw-r--r-- 1 root root 574 Mar 3 2001 auto.misc
-rw-r--r-- 1 root root 823 Feb 28 2001 bashrc
drwxr-xr-x 3 root root 4096 Apr 7 2001 CORBA
drwxr-xr-x 2 root root 4096 Mar 8 2001 cron.d
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.daily
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.hourly
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.monthly
-rw-r--r-- 1 root root 255 Feb 27 2001 crontab
drwxr-xr-x 2 root root 4096 Oct 1 2001 cron.weekly
-rw-r--r-- 1 root root 380 Jul 25 2000 csh.cshrc
-rw-r--r-- 1 root root 517 Mar 27 2001 csh.login
drwxr-x--- 2 root root 4096 Oct 1 2001 default
--More--

Here’s the same output from ls -l /etc that you saw earlier in this chapter, but this time it’s limited
to a single screen’s worth of files because the output is piped through the more command. (Learn more
about more in the “Common File Manipulation Commands” section later in this chapter.)

Pipes, redirection, and all the other features in this section can be combined in near-infinite combinations
to create complex chains of commands. For example, the command

sort < terms > terms-alpha | mail fred

would perform the sort operation described previously, and then mail the contents of the terms-alpha
file to a user named fred. The only limitation to these combinations is the user’s ingenuity.

Command Substitution
Command substitution is yet another way of using the output of one command as an argument to
another. It is a more complex operation than simply piping the output through a second command,
but it can be used to create command strings of some sophistication. Consider the command:

ls $(pwd)

114

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 114

In this case, the command pwd is the first command to run; it outputs the name of the working directory.
Its value is sent as an argument for the ls command. The output returned by this command would be
the directory listing for the current working directory.

The astute reader will note that this example has much the same effect as the ls command itself, but it
is a useful illustration of command substitution in operation.

Yes, this command has much the same effect as:

pwd | ls

The output is the same, but there are some differences in the behind-the-scenes way that it’s carried out.
The construction using the $ operator is distinctive in that the command in parentheses is executed in a
subshell — that is, a new instance of the shell is spawned, the command is evaluated, the subshell closes,
and the result is returned to the original shell.

If you have special environment conditions set up that might not transfer to a subshell (a manually set
PATH value, for example), the subshell might not inherit this condition. In such a case, the command
may fail.

Instead of using the $() construction, you can also use backticks. For example,

ls `pwd`

accomplishes exactly the same thing as ls $(pwd). Another alternative is to use curly braces, as in:

ls ${pwd}

The difference here is that the command in the curly braces is executed in the current shell, and no sub-
shell process is spawned. (Curly braces do not work on all Unix variants.)

Working with Files and Directories
The most common Unix commands are those used to manage files and directories. You might find your-
self issuing one of these commands hundreds of times a day as you go about your business. In this sec-
tion, you learn the two most popular file management commands and the various arguments that go
along with them.

ls
Earlier in this chapter, you learned to use the ls command to list the contents of a directory. The output
of ls can be simple or extremely lengthy and complex. Both results are valuable, depending on the kind
of information you need about directory contents. The ls command takes the syntax:

ls [options] [directory]

If you don’t specify a directory, ls assumes that you want to know about the contents of the current
working directory. You can use ls to get information about any directory on the system, however, as
long as its permissions allow you to read the contents. (Permissions are discussed later in this chapter.)

115

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 115

The ls command offers a number of arguments that can shape the output to provide the information
you need. The following table shows some of the most commonly used options. If these are not the argu-
ments you need, consult the ls manual page with the command man ls.

Argument Function

-l Lists directory contents in long format, which shows individual file size, per-
missions, and other data.

-t Lists directory contents sorted by the timestamp (time of the last modification).

-a Lists all directory contents, including hidden files whose name begins with the
. character.

-i Lists directory contents including inode or disk index number.

-R Lists directory contents including all subdirectories and their contents.

cd
The cd command is something that you will use frequently. It’s the command used to move through the
file system. It takes the syntax:

cd directory

If you issue the command without a directory destination, cd automatically moves you to your home
directory. This is particularly useful when you’ve been exploring the file system and find yourself nested
deep within another directory structure; just type cd at the command prompt and you’ll return to famil-
iar ground immediately.

Common File Manipulation Commands
After you’ve found the file you’re looking for, there are a number of things you can do to it. This section
introduces several commands used to manipulate individual files, whether they are programs, docu-
ments, or other elements treated as files by the Unix operating system.

The commands available to you depend on the Unix distribution you are using, as well as the installation
choices made by your system administrator.

cat
If you want to see the contents of a given file, there’s no easier way than the cat command, which prints
the contents of a specified file to the standard output, usually the monitor. It takes the following syntax:

cat [options] file(s)

If you simply issue the command as cat filename, the contents print to the screen, scrolling if the file
is longer than the screen length. Use a pipe to send the output through more or less (discussed in the
following section) if it is too long to view in one screen. The following table shows a number of options
for the cat command.

116

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 116

Argument Function

-n Numbers the output’s lines

-E Shows a $ character at the end of each line

-s Collapses sequential blank lines into one blank line

-t Displays nonprinting tabs as ^I

-v Shows all nonprinting characters

One particularly helpful use of the cat command is to concatenate multiple files into one larger new file,
making it easier to read the content of these files at one time. Do this with the command:

cat file1 file2 file3 >> newfile

Note the use of the redirection operator >> in this command.

more/less
The more and less commands are virtually identical. They are used to break up command output or file
contents into single-screen chunks so that you can read the contents more easily. Both more and less
can move forward through a file, although only less can be used to move backward. The commands
take the same syntax:

more filename
less filename

When you have finished viewing the current screen of output, press the spacebar to advance to the next
screen. If you are using less to view the output or file, you can use the B key to move back one screen.

If you’ve found the information you’re looking for but you haven’t scrolled through the entire file yet,
just press Q in either more or less. You’ll return to the command prompt.

mv
The mv command is used to move a file from one location to another. It takes the syntax:

mv old new

where old is the current name of the file to be moved to the location defined as new. If the value of new
is simply a new filename, the file is renamed and remains in the current directory. If the value of new is a
new directory location, the file is moved to the new location with the existing filename. If the value of
old is a directory, the entire directory and its contents will be moved to the location specified as new.

Depending on the settings on your system, if new is an existing file or directory, its contents will be
overwritten by the contents of old. Be careful when reusing file and directory names.

117

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 117

cp
Like the mv command, cp is used to create new files or move the content of files to another location.
Unlike mv, however, cp leaves the original file intact at its original location. cp uses the syntax

cp file1 file2

where file1 is the original file and file2 is the destination file. If you use the name of an existing file
as the destination value, cp overwrites that file’s contents with the contents of file1.

rm
The rm command is used to delete a file. It uses the syntax:

rm [options] filename

This command can be quite destructive unless you are careful when you issue it, especially if you use
wildcards. For example, the command rm conf* deletes all files beginning with the characters conf,
whether you wanted to delete those files or not. The following table shows some common options for rm.

Argument Function

-i Forces interactive mode, prompting you to confirm each deletion

-r Forces recursive mode, deleting all subdirectories and the files they contain

-f Forces force mode, ignoring all warnings (very dangerous)

Be aware that combining certain options — especially the -r and -f flags — can be dangerous. The
command rm -rf *.* would remove every single file from your file system if issued from the root
directory, or every file from your home directory if issued from there. Don’t do this.

touch
The touch command is used to update the timestamp on the named file. The timestamp shows the last
time the file was altered or accessed. touch uses the syntax:

touch filename

If the filename issued as an argument does not exist, touch creates it as an empty file.

wc
Use the wc command to determine the length of a given file. wc uses the syntax:

wc [options] filename

By default, the output shows the length in words. The following table shows the options available for wc.

118

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 118

Argument Function

-c Shows number of individual characters (bytes) in the specified file

-l Shows number of lines in the specified file

-L Shows the length of the longest line in the specified file

File Ownership and Permissions
One of the distinguishing features of Unix is that it was designed from its earliest days to be a multiuser
system. In contrast, it is only in recent years that other operating systems have created true multiuser
functionality on a single machine. Because of its multiple-user design, Unix must use mechanisms that
enable users to manage their own files without having access to the files of other users. These mechanisms
are called file ownership and file permissions.

File Ownership
Any Unix user can own files. Generally, the files that the user owns are ones that he created, or which
were created as a result of some action on his part. The exception to this, of course, is the superuser, also
known as root. The superuser can change the ownership of any file, whether he created it or not, with
the chown command. For example, if the superuser gives the command

chown jane /home/bill/billsfile

the ownership of the file /home/bill/billsfile is transferred to the user jane. Won’t Bill be surprised
when that happens?

Username versus UID
By now you’re familiar with the idea of a username, the name you use when you log in to a Unix machine.
The name is assigned to you by the system administrator (or yourself, if you’re your own system adminis-
trator). In addition to a username, every user has a numerical ID number known as a user ID or UID,
which is how the user is known to the system. Typically, these numbers are assigned automatically,
although they can be specified when an account is created. The number itself is arbitrary, even though
many systems require that ordinary users have UID numbers above 500.

The superuser always has UID 0.

For purposes other than logging in, the username and UID are basically synonymous. For example, the
command

chown jane /home/bill/billsfile

could just as easily be rendered as

chown 503 /home/bill/billsfile

assuming that Jane’s UID is 503. You don’t need to know your UID for normal purposes, but it can come
in handy.

119

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 119

Groups
In addition to a UID, you also have at least one group ID, or GID. As with the UID, the operating system
uses GIDs rather than the group names to manage groups. Every user belongs to at least one group, and
may belong to several more. Groups contain users who share certain permissions for certain activities.
You may belong to a group that has the same name as your username. The superuser may add you to
other groups depending on the access you need to certain files or directories.

Groups can also own files, and file ownership can be transferred from one group to another. To do so,
use the chgroup (change group) command:

chgroup groupname filename

As with chown, you can substitute the GID for the group name.

File Permissions
The concept of file permissions is related to the concept of file ownership. As the owner of a file, a user
has a right to decide who can access a file, and what kind of access others can have. File permissions are
somewhat confusing to the Unix novice, but they are a critical part of maintaining a safe and secure
machine, so this section reviews what you learned about permissions in Chapter 4.

Permissions should be as restrictive as possible. As long as legitimate users can use the file in intended
ways, every other avenue of access should be locked down.

There are three kinds of file permission:

❑ Read (file can be viewed)

❑ Write (file can be edited)

❑ Execute (file can be run as a program)

Likewise, there are three categories of users to whom these permissions can be applied:

❑ User (owner of that particular file)

❑ Group (group to which the file is assigned)

❑ All (all users and groups)

When you define permissions for a given file, you must assign a type of permission to each category of
users. If you are writing a program, you probably want to give yourself read, write, and execute permis-
sion. If you are working with a team, you might want to have your system administrator create a group
for the team. You can then give the team read and execute permissions so they can test your program
and make suggestions but not be able to edit the file. Without write permission for the team, changes
must go through you.

If you’re going to create a group to grant read and execute permissions to a specific set of users, be sure
to deny the same permissions to all users not in the group.

120

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 120

How to Read a Permissions List
How do you tell what permissions a file has? Simple, just use the ls -l command, and the permission
information is printed as part of a directory listing. For example, here’s a partial listing of the /etc direc-
tory shown earlier in the chapter (from left to right, the columns show file permissions, UID, username,
group name, file size, timestamp, and filename):

-rw-r--r-- 1 root root 1048 Mar 3 2001 aliases
-rw-r--r-- 1 root root 12288 Sep 8 2003 aliases.db
-rw-r--r-- 1 root root 370 Apr 3 2001 anacrontab
-rw------- 1 root root 1 Apr 4 2001 at.deny

The string of characters on the left displays all the permission information for each file. The permission
information consists of nine characters, beginning with the second character from the left. The first three
characters represent the permission for the user, the second three for the group, and the final set of three
represents permission for all.

-rwxrwx---

The preceding expression shows that the user and the group have read, write, and execute permission.
The string

-rw-rw-r--

shows that the user and the group have read and write permission, and all other users have only read
permission.

Changing Permissions
The permissions on a file can only be changed by the file’s owner or the superuser. Permissions are
changed using the chmod (think “change mode”) command. chmod can be used in two ways: symbolic
or absolute. These methods are discussed in Chapter 4.

umask
When you create a file, it has a default set of permissions. On most systems, any file you create will have
read and write permissions for you, and no permissions for your group or other users. Like everything
else in Unix, this behavior is configurable.

The default permission scheme is controlled by the umask command. Like chmod, umask takes a numerical
value as its argument. Unlike chmod, however, the value given to umask represents the permissions that are
to be denied. That is, the umask value gives permission to everything except that which is specified.

To put this in concrete terms, suppose that you want to give all newly created files the permission mode
644, which gives the owner read and write permission, and read permission to both group and all as
described in Chapter 4. Simply take that number and subtract it from 666, the default octal base for files,
to get the proper argument for umask:

umask 022

This command will cause all new files to be created with permission mode 644. The effect of umask is
limited to the shell in which it’s invoked. To make the effect persist, put it in your .profile file.

121

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 121

Executable Files
As mentioned earlier, programs are just files that are executable. It may seem an obvious point, but all
you really need to do to make a file executable is to give execute permission on the file to anyone who
you want to be able to run it. Not to belabor the obvious, but it’s very common for people to create a
program on a Unix machine, and then wonder why it won’t run. Making the file executable is a crucial
step in the process.

First, use the ls -l command to check the current permissions on the file. If you do not have execute
permissions for this file, use chmod to change the permissions. Remember, though, that you must be the
file’s owner to change the file’s permissions. If you are not the owner, you must find the file’s owner and
have that person issue the chmod command to give you access.

If you have superuser access, you can force the permissions change without asking the owner. This isn’t
particularly friendly, though. If you must make these changes, it’s a good idea to inform users that
you’ve changed permissions on their files.

If you’re still having trouble invoking an executable file, you may have run into another common problem
faced by programmers unfamiliar with Unix — an incorrect PATH value. Chapter 5 introduced the concept
of the PATH environment variable. If the directory containing the executable file is not part of your PATH
variable’s value, you must give the full path name of the executable file to run it. Should you want to
make the program available to users other than yourself, it may be a good idea to move the executable to
a directory that is in the global PATH variable’s value, as defined by your system administrator. After the
PATH issues have been resolved, you’ll just need to type the program’s name at the prompt to run it.

Maintaining File System Quotas
One of the problems that continually confront Unix administrators is that of disk space. Anybody who’s
owned a computer for any length of time knows how files can proliferate to the point where they eat up
all available disk space. As you can probably guess, this problem is multiplied many times on a multi-
user system. With multiple users, each user’s space-hogging tendencies combine to create one giant
disk-space-eating monstrosity. What can you do?

Luckily, there’s a built-in solution on most Unix systems: disk quotas. A quota is a limit on the amount of
disk space each user is allotted. Most Unix systems have some sort of quota system available, but they
differ in their implementations. Should the default quota system on your machine not be sufficient, you
can purchase commercial software robust enough for vast numbers of greedy file-swapping users.

The first step in implementing quotas is to enable them for the file system. On most systems, this requires
a change to the file system control file (usually /etc/fstab). Different systems will have different for-
mats for enabling quotas in this file. Under Linux, for example, the /etc/fstab file might look like this:

LABEL=/ / ext3 defaults 1 1
LABEL=/boot /boot ext3 defaults 1 2
none /dev/pts devpts gid=5,mode=620 0 0
LABEL=/home /home ext3 defaults,usrquota,grpquota 1 2
none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0

122

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 122

/dev/hda2 swap swap defaults 0 0
/dev/cdrom /mnt/cdrom udf,iso9660 noauto,owner,kudzu,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0

The usrquota and grpquota options added to the line for the /home file system indicate that quotas are
in effect for those directories. Directories without those options do not have quotas enabled.

Other Unix flavors have different formats, so consult your system’s documentation to find the correct
syntax.

After you’ve added the quota options to the appropriate directory lines in /etc/fstab or made other
configurations as required by your system, the file system must be remounted. If your system is a per-
sonal computer that only you (or just a few people) are using, you can simply reboot the machine. If
you’re enabling quotas across a larger network, you may need to manually unmount (umount com-
mand) and then remount (mount command) the file system.

If you have multiple users on your system, you may want to schedule this operation for a low-traffic
time, such as late at night. You will also need to kick any logged-in users off the system.

Quotas are now enabled in the defined directories. To get the quotas working, you need to create a quota
file in the top-level directory of the file system. The file defines the limits the quotas enforce. As with the
/etc/fstab file, different flavors of Unix use different methods to do this. Under Linux, you can use
the quotacheck command:

quotacheck -acug /home

This command implements four separate arguments:

❑ -a— All mounted local file systems in the /etc/mtab file are checked to see if quotas are
enabled.

❑ -c— Quota files should be created for each file system with quotas enabled.

❑ -u—quotacheck checks for user quotas.

❑ -g—quotacheck checks for group quotas.

Under other systems, you may have to create the quota files by hand. A common procedure might look
something like this:

cd /home
touch quotas
chmod 600 quotas

This creates the quotas file and makes it writable only by the superuser. Although any user can issue
the chmod command on files the user account has permissions for, only the superuser can chmod files to
root level permissions.. Only the root user should be allowed to set quotas on the system.

With the quota files set up, use the edquota command to set the quotas. For example, to edit the quota
for the user jeff, you’d give the following command:

edquota jeff

123

Unix Commands In-Depth

09_579940 ch06.qxd 3/21/05 6:05 PM Page 123

This opens a quota file for the user jeff. The file opens in your text editor (more about text editors in
Chapter 7) and looks something like this:

Disk quotas for user jeff (uid 506):
Filesystem blocks soft hard inodes soft hard
/dev/hda3 440436 0 0 37418 0 0

Blocks show the amount of data in Jeff’s account, and inodes show the number of individual files.
Replace the zeroes under “soft” and “hard” with the soft and hard limits you want to give this user. A
soft limit can be exceeded, but the user will get a warning; a hard limit cannot be exceeded. Exit the edi-
tor, and the user’s quota is set.

A block is 512 bytes of data. Be sure to do the math before you set quotas so that you are limiting users
to the true amount of disk space you want to allot.

Summary
Whether or not you use a graphical interface for most of your work, you can always manage a Unix
machine from the command line. Commands invoke programs that modify elements of the user experi-
ence, enable you to work with documents and executable code, and perform administrative tasks. In this
chapter, you learned about several command families:

❑ Commands that find information

❑ Commands that channel input and output in non-standard ways

❑ Commands that help you work with the file system

❑ Commands that change and move existing files

❑ Commands that define and change file ownership and permissions

❑ Commands that set and enforce disk quotas

Exercise
Create a command that will list the contents of each subdirectory of the /home directory beginning with
the letter k, count the number of files found, and save that number in a file called k-users-files.

124

Chapter 6

09_579940 ch06.qxd 3/21/05 6:05 PM Page 124

7
Editing Files with Vi

There are many ways to edit files in Unix, including the use of early line-based text editors such as
ed (EDitor) and ex (EXtended) and the use of screen-oriented text editors such as Emacs (Editor
MACroS) and vi (VIsual editor). Line editors allow you to edit a file only line by line; screen edi-
tors enable you to edit lines in context with other lines in the file. Vi is generally considered the de
facto standard in Unix editors because:

❑ It’s usually available on any Unix system. Once you have learned how to use it, there is
no learning curve when you’re working on another Unix system, which allows for faster
recovery or adjustments of files.

❑ Vi implementations are very similar across the board (from Linux, to Mac OS X, to Sun
Solaris, and so on).

❑ It requires very few resources.

❑ It is more user friendly than ed or ex.

Vi is pronounced “vee eye.” There is a popular joke about a newbie (someone new to Unix or to
computers in general) asking a more seasoned Unix veteran when the Seven (VII) editor would
be coming out because Six (VI) seemed outdated.

Nearly everyone who uses Unix will need to know how to use vi at one time or another, especially
in situations with limited resources (where no graphical user interface [GUI] is present or where
minimal resources are available). Vi can be intimidating to new users, especially those who are
used to graphically oriented word processors. Vi is purely a functional text editor, and no fancy
formatting can be accomplished through vi by itself, although you can use it in conjunction with
a text formatter such as LaTeX (http://directory.fsf.org/text/doc/LaTeX.html).

This chapter teaches you to use vi, from the basics to more advanced text manipulation functions.

10_579940 ch07.qxd 3/21/05 6:04 PM Page 125

Using Vi
When you begin using vi, it can seem to be a cold, unhelpful environment, but once you’re familiar with
the basics, it’s not at all unfriendly. There are several ways to start (“open an instance of”) vi, all of which
you type in a console window:

Command Description Results

vi Start vi without any filename Vi starts with an empty palette. You
arguments. must save to a new file before exiting.

vi filename 1. Use an existing filename as 1. The existing file opens in vi. When
the argument. you save it, the file is updated with the
2. Use a new filename as the changes you make.
argument (file doesn’t exist 2. When you save this file, you create a
until saved in vi). new file with the filename specified in

the argument.

vi -R filename Open the file in read-only The file is read-only (changes can’t be
or view filename mode. saved); great for practicing your vi

commands on a file.

Figure 7-1 shows the editor started with command vi filename (vi testfile).

Figure 7-1

Whenever you start vi — whether by itself, with an existing filename, or with a new filename — you
begin in command mode. Figure 7-2 shows a new file open in vi.

126

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 126

Figure 7-2

You will notice a tilde (~) on each line following the cursor. A tilde represents an unused line (no line
feed or text of any kind). If a line does not begin with a tilde and appears to be blank, there is a space,
tab, newline, or some other nonviewable character present. As Figure 7-2 shows, there’s not much infor-
mation on most versions of vi (some do provide minimal information or direction on what to do next);
the only information is in the status line at the bottom of the screen, which displays the filename and
the line the cursor is on. Like a lot of things in Unix, the information provided may vary from system to
system. Your implementation of vi may have more or less information.

Figure 7-3 shows how to start vi with an argument of a file that exists (/etc/services).

Figure 7-3

127

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 127

If you receive a permission-denied error or read-only indicator when trying to open a file with vi, either
that file has protections beyond what you can access or you started vi in read-only mode.

Non-text files, such as binary files, can create problems for the user in vi, such as displaying garbage —
output that is unreadable. If you run into a file with unexpected results (nonreadable, for example), sim-
ply type :q! to exit the file without making any modifications to the file.

There are two modes in vi:

❑ Command mode — Enables you to perform administrative tasks such as saving files, executing
commands, moving the cursor, cutting (yanking) and pasting lines or words, and finding and
replacing. In this mode, anything that’s typed — even a single character — is interpreted as a
command.

❑ Insert mode — Enables you to insert text into the file. Everything that’s typed in this mode is
interpreted as input.

Vi always starts in command mode. To enter text, you must be in insert mode. How do you get there?
Simply type i. There are other ways to get into insert mode, and they’re described later in the chapter.
To get out of insert mode, press the Esc key, which will put you back into command mode.

If you are not sure which mode you are in, press the Esc key twice, and then you’ll be in command
mode. In fact, just to be safe, you can always press Esc twice to get into command mode.

Moving within a File
To move around within a file without affecting your text, you must be in command mode (press Esc
twice). The most basic movement is from character to character. Here are some of the commands you can
use to move around one character at a time:

Command Result

k Up one line

j Down one line

h Left one space

l Right one space

You can use the standard arrow keys available on most keyboards to move around in a file, but it’s rec-
ommended that you know the keys specified in the table because the arrow keys do not work on all plat-
forms for which vi is available.

If you want to move more than one character or line within the file, you can put the number of move-
ments you want to make prior to pressing the movement key. For example, if you want to move 10 lines
down in a file, you can type 10j (while in command mode) and your cursor will move 10 lines down
from the current line. Here’s another example; assume you have the following line in a file:

The quick brown fox jumped over the lazy dog.

128

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 128

If the cursor is at the first T in this sentence, and you type 10l, the cursor will move 10 characters to the
right (including spaces) — to the b in brown. If the cursor is on the f in fox and you type 6h, the cursor
will also move to the b in brown, 6 characters to the left.

Vi is case-sensitive, so you need to pay special attention to capitalization when using commands.

There are many other ways to move within a file in vi. Remember that you must be in command mode
(press Esc twice). Here are some of them:

Command Description Result

0 Zero Positions cursor at beginning of line

$ Dollar sign Positions cursor at end of line

w Lowercase w Positions cursor to the next word (words are
groups of characters separated by a space, tab,
or punctuation mark)

b Lowercase b Positions cursor to previous word

(Left parenthesis Positions cursor to beginning of current sentence
(sentences are identified by the punctuation marks
followed by two spaces

) Right parenthesis Positions cursor to beginning of next sentence

Ctrl+F Press Ctrl and F keys at Scrolls forward one full screen
the same time

Ctrl+B Press Ctrl and B keys at Scrolls backward one full screen
the same time

G Uppercase G Positions the cursor on the last line of the file (you
can use xG to represent a line number to go to as
well; for instance, 4G will move the cursor to line 4)

:x Colon followed by a Positions the cursor on line number represented
number (replace x with by x (for example, :4 will move to line 4 of the file)
the number)

Let’s take a look at some examples of using these keys to move around a file. Figure 7-4 shows a file
(/etc/syslog.conf) open on a Mac Os X system in a vi session.

In the /etc/syslog.conf file, the * represents zero or more occurrences, as explained in Chapter 8.
As in most Unix files, the # sign at the beginning of a line represents a comment that isn’t read by the
system, but is intended for the person viewing the file.

129

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 129

Figure 7-4

In this file, the cursor is on the first line, second character (.). Because the sizes of terminal windows
vary, the beginning of a new line can be confusing. In this example, the word “sole” on a line by itself
appears to be a new line, but in actuality the next new line begins with the asterisk (*) following “sole”;
you want to keep this in mind when you use the line movement command. This is easier to visualize
when you turn on line numbers. You can do so by using the :set nu option while in command mode
(see Figure 7-5). The :set nu command numbers each new line (including blank lines) — the number-
ing is not part of the actual file, but definitely helps you see which line is which. The command to
remove the line numbers is :set nonu.

Figure 7-5

130

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 130

While you are in insert mode, pressing the Enter key starts a new line. If you enter text with 5,000
words before pressing the Enter key, those 5,000 words are considered a single line.

If you type $ while in command mode in the file shown in Figure 7-5, the cursor will move to the end of
line 1 and, assuming there are no spaces after the word /dev/console, it will be positioned on the e in
console. If you type 0 (zero) while in command mode, the cursor will be positioned at the * (asterisk) of
line 1. Now that you are back at the beginning of the line, type w and the cursor will move to the e in err.
The cursor moves to this position because the commands w and b (lowercase) move word by word, count-
ing each punctuation mark as a word. Uppercase W and B accomplish the same thing except that punctua-
tion is not counted. If you type W, the cursor will move to the next word, so it will be positioned on the
first / in /dev/console in the first line. You can also put a number before these commands to move the
cursor that many positions. For instance, if you want to move forward 6 blocks of text, you type 6w.

Remember that all commands in vi are case-sensitive. Typing a command key in the wrong case can
result in unexpected output.

To identify the cursor’s current location, use the key combination Ctrl+G. The line and character posi-
tion of the cursor are displayed in the status line at the bottom of the screen, as shown in Figure 7-6.
This is important in case you want to return to the line after you progress through the file.

Figure 7-6

Here’s the status line from Figure 7-6:

syslog.conf: unmodified, readonly: line 9 of 18 [50%]

It says that the syslog.conf file is currently being viewed and has not been modified in any way
(including spaces). The file is opened read-only, which means that the file cannot be saved with the same
name, overwritten, or modified based on current file permissions. The cursor is positioned on line 9, and
there are 18 total lines in the file. The cursor is at the 50% mark of the file.

131

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 131

The vi status bar shows the full path of a file that’s opened outside of its current directory. For instance,
if the file in this example were opened from /home instead of /etc (where it resides), the filename
would show the full path /etc/syslog.conf.

You can use the line-numberG command to return to a specific line number. If you were at the end of
the file and wanted to return to the line where the cursor is shown in Figure 7-6, for example, you’d type
9G while in command mode.

The Ctrl+G combination shows different output depending on the platform on which vi is used. For
instance, Figure 7-7 shows the same command (Ctrl+G) used on a Linux system.

Figure 7-7

Here’s the status line from the bottom of Figure 7-7:

“syslog.conf” [readonly] 55 lines --3%-- 2,2 Top

It shows that the file syslog.conf is open read-only and has 55 lines. The cursor is located 3% into the
file, at line 2, character 2 (2,2). (The file’s complete path would display if the file were opened in a direc-
tory other than its own.)

132

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 132

Searching Files
Sometimes there’s a particular portion of a file that you want to find. In those cases, you can do a simple
search. To initiate the search, press Esc twice to get into command mode and type /, followed immedi-
ately by the characters for which you want to search, and then press Enter or Return. For example, to
search for the string end, you’d type /end and then press Enter or Return. This search finds the character
string regardless of where it is in the word, so if you were searching for the word end, you might not find
it, because the cursor would move to the first instance of the search criteria in the file, possibly end by
itself, but also perhaps suspend, depend, endeavor, fender, and so on. If you type spaces in the search,
these are taken into account as well, so that typing / end will find a word beginning with end. If you
want to search backward from the current cursor position (toward the beginning of the file), type a ?
(question mark) instead of a /.

If there are multiple instances of the search characters you are looking for, you can type a lowercase n
after each find to search in the same direction (forward or backward) or an uppercase N after each to
search in the opposite direction of your current search.

Exiting and Saving a File
After you’ve read or edited your files, you’ll want to exit vi. The most commonly used exit commands
are :q! and :wq. To exit vi without saving your changes, go into command mode and type :q!. If you
want to save the file and exit vi, go into command mode and type :wq. The following are the major com-
mands for exiting and saving files (remember to press Esc twice to ensure you are in command mode):

Command Description Result

:q Colon lowercase q Quits vi editor. If changes were made, vi either
asks if you want to exit without saving or
informs you that changes were made and does
not exit.

:w Colon lowercase w Writes (saves) the current file. If you are editing
an existing file and you don’t have the proper
permissions to write to the file, it is not saved
and you receive an error message (as you do if
the file is opened in read-only mode).

:wq Colon lowercase w and q Write the file and then quit (same issues with
permissions as :w).

:q! or :w! Preceding commands The ! tells vi to do the command without any of
or :wq! followed by exclamation the protections of asking if you want to over-

mark write an existing file or asking if you want to
save the file before exiting, for example. If you
don’t have write access to a file and you use the
:wq! combination, vi will fail to write and quit
successfully, and you will lose your edits.

Table continued on following page

133

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 133

Command Description Result

ZZ Two uppercase Zs Writes the file and exits (same as :wq).

:x Colon lowercase x Writes the file and exits.

:w filename Colon, lowercase w, space, Writes the file as filename. This saves your file
filename (use an actual with your changes to another file, which means
filename in place of that you can save changes to a file that you
filename) don’t have permissions for. You write the new

file to a directory for which you do have per-
missions, such as your home directory. This
option must be used if you started vi without a
filename argument; otherwise you lose all data
in the file.

:e! Colon lowercase e Opens the last successfully written version of
followed by exclamation the file (without saving any current changes).
mark This is great for recovering from multiple mis-

takes made since your previous write without
having to quit and restart vi.

If you use :w filename to save your edits to a file other than the one you were originally editing, be
aware that you are left in the original file, not the one you saved your work to. For example, if you open
/etc/syslog.conf and make changes, but don’t want to save all the changes before double-checking
the file, you can save the altered file to /tmp/syslog.conf with the :w /tmp/syslog.conf command.
If you then make more changes to the open file and save the file with the :wq! command, all those
changes are saved in /etc/syslog.conf.

Vi also lets you append the file you have created to another file using the redirection characters >>. For
example, if you want to append your current file to /tmp/testfile2, simply issue :w >> testfile2
and the contents of the current file are added to the end of testfile2 file. The testfile2 file must
already exist for this command to work.

Editing Files
All of the previous sections covered commands that can be run in command mode, which doesn’t allow
you to edit your files. To edit the file, you need to be in the insert mode, as mentioned earlier in the chap-
ter. There are many ways to enter insert mode from the command mode:

Command Description Result

i Lowercase i Inserts text before current cursor location

I Uppercase I Inserts text at beginning of current line

a Lowercase a Inserts text after current cursor location

134

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 134

Command Description Result

A Uppercase A Inserts text at end of current line

o Lowercase o Creates a new line for text entry below cursor location

O Uppercase O Creates a new line for text entry above cursor location

Most commands in vi can be prefaced by the number of times you want the action to occur. For exam-
ple, 2O creates two new lines above the cursor location.

These commands are entered while in command mode to begin the process of entering text into vi. Typing
a lowercase i simply puts you into insert mode, with the text input occurring before the location of the
cursor. Let’s look at some examples using the following sentences (which will be used throughout this
section):

Sentence one.
The quick brown fox jumps over the lazy dog.
Sentence three.

If the cursor is on the character r in the word brown in the second sentence, and you type the letter i in
command mode, any letters you type after that will go between the b and the r in brown. Say that after
you enter insert mode, you type the letters newtext. Here’s what the example sentence will look like:

The quick bnewtextrown fox jumps over the lazy dog.

If you type the letter a instead of i while in command mode, text insertion will begin after the r and
before the o in brown, and the example sentence will look like this:

Sentence one.
The quick brnewtextown fox jumps over the lazy dog.
Sentence three.

If you use the o command to enter the same text from the same starting point, the result will be:

Sentence one.
The quick brown fox jumps over the lazy dog.
newtext
Sentence three.

The O command from the same starting point will result in:

Sentence one.
newtext
The quick brown fox jumps over the lazy dog.
Sentence three.

Using the I or A will allow you to insert text at the beginning (before “The”) or at the end (after “dog.”)
of the current line, respectively. You remain in insert mode until you press the Esc key.

135

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 135

Deleting Characters
Deletion of characters, lines, and words within vi requires its own set of commands. Here are the most
common:

Command Description Result

x Lowercase x Deletes the character under the cursor location (or starting
with the character under the cursor if the command is pre-
ceded by a number)

X Uppercase X Deletes the character before the cursor location (or starting
with the cursor if the command is preceded by a number)

dw Lowercase dw Deletes from the current cursor location to the next word
(or multiple words if preceded by a number)

D Uppercase D Deletes from the cursor position to the end of the current
line

dd Lowercase dd Deletes the line the cursor is on

Using the same example sentence, with the cursor over the r in the word brown:

❑ The x command deletes the letter r.

Sentence one.
The quick bown fox jumps over the lazy dog.
Sentence three.

❑ The X command deletes the letter b:

Sentence one.
The quick rown fox jumps over the lazy dog.
Sentence three.

❑ The dw command removes from the letter under the cursor to the beginning of the next word:

Sentence one.
The quick bfox jumps over the lazy dog.
Sentence three.

❑ The D command deletes from the letter under the cursor through the end of the line (until a
new line):

Sentence one.
The quick b
Sentence three.

136

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 136

❑ The dd command deletes the entire line, leaving:

Sentence one.
Sentence three.

These are commands that can be prefaced with the number of times you want the action to occur. For
instance, using the original example and beginning with the cursor on the r in brown, the command 2x
deletes 2 characters:

Sentence one.
The quick bwn fox jumps over the lazy dog.
Sentence three.

A 2dw command results in:

Sentence one.
The quick bjumps over the lazy dog.
Sentence three.

A 2D command deletes from the r under the cursor through the following line so that you’re left with:

Sentence one.
The quick b

Some of these options work a little differently in the various implementations of vi. If one of the commands
in this chapter doesn’t work as expected, refer to the man page for vi.

A 2dd command leaves only the first sentence:

Sentence one.

In vi, commands can be combined to form complex actions. The command sequence ddO, for example,
deletes the current line and then opens a newline for your new text. With your cursor on the r in brown
in the example sentences, in command mode, type ddO and then type Now is the time for all good men
to come to the aid of the party. Here’s the result:

Sentence one.
Now is the time for all good men to come to the aid of the party.
Sentence three.

The two separate vi commands run together, deleting the line the cursor is on (dd) and opening a new-
line (O).

Change Commands
You also have the capability to change characters, words, or lines in vi without deleting them. Here are
the relevant commands:

137

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 137

Command Description Result

cc Two lowercase c’s Removes contents of the line, leaving the text you type in.

cw Lowercase c and Changes the word the cursor is on from the cursor to the
lowercase w end of the word. This command also puts you into insert

mode. If you want to change the whole word, your cursor
must be positioned on the first character in the word.

r Lowercase r Replaces the character under the cursor. Vi returns to
command mode after the replacement is entered.

R Uppercase R Overwrites multiple characters beginning with the char-
acter currently under the cursor. You must use Esc to stop
the overwriting.

s Lowercase s Replaces the current character with the character you
type. Afterward, you are left in insert mode.

S Uppercase S Deletes the line the cursor is on and replaces with new text.
After the new text is entered, vi remains in insert mode.

Let’s see how these commands work. Here are the example sentences again:

Sentence one.
The quick brown fox jumps over the lazy dog.
Sentence three.

The cc command gets the same result as the command sequence ddO. With your cursor on the r in
brown in the example sentences, in command mode, type cc and then type Now is the time for good
men to come to the aid of the party. Here’s the result:

Sentence one.
Now is the time for all good men to come to the aid of the party.
Sentence three.

The cw command is the same as the command sequence dwi, except that a blank character will exist after
the deletion. Assuming that your cursor is still on the b in brown, compare the result of the two in the
following lines:

The quick b fox jumps over the lazy dog.
The quick bfox jumps over the lazy dog.

The first line uses cw, and the second uses dwi. The cw command throws you into insert mode so that
you can change the text at that point. For example, if you type cw lue, the result is a fox of a different
color:

Sentence one.
The quick blue fox jumps over the lazy dog.
Sentence three.

138

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 138

The r command enables you to replace the character under the cursor with whatever single character you
type next. If you type r in command mode in the example sentence, and then type 5, the result will be:

The quick b5own fox jumps over the lazy dog.

The R command allows you to replace characters (beginning with the one under the cursor) with the
new text you type — each character you type replaces an original character. Type R, and then type 555
1234, and here’s the result:

The quick b555 1234 jumps over the lazy dog.

The lowercase s works the same as the R, except it deletes the letter under the cursor and then begins
overwriting.

Advanced Commands
There are some advanced commands that simplify day-to-day editing and allow for more efficient use of
vi. Here are some of the most useful:

Command Description Result

J Uppercase J Joins the current line with the line below it

yy Two lowercase y’s Yanks (copies) the current line

yw Lowercase y and Yanks (copies) the current word from the character the
lowercase w cursor is on until the end of the word

p Lowercase p Puts the yanked text after the cursor

P Uppercase P Puts the yanked text before the cursor

Use the J command to join two lines together. With the example sentences (and the cursor on the r), the
result of J will be:

Sentence one.
The quick brown fox jumps over the lazy dog. Sentence three.

Adding a number before the J command may or may not join more lines, depending on your vi
implementation.

The yank command is one of the most useful commands when editing large files. Yanking is akin to
using the copy command in graphical editors. Type yy with the cursor on the r in brown, and the entire
line is copied into memory. Move the cursor to the line preceding where you’d like the yanked text to
appear, and type p. The copied line appears on the line after the cursor’s current line. For example, I ran
the yy command while the cursor was on the r in brown. I placed the cursor on the line that says
“Sentence three” and typed p, with the following result:

139

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 139

Sentence one.
The quick brown fox jumps over the lazy dog.
Sentence three.
The quick brown fox jumps over the lazy dog.

When yanking and pasting, you will lose what is held in the yank buffer if you enter a delete command,
because the buffer will fill with whatever was deleted. You can use movement or insertion commands
and not lose the yank buffer. This behavior may differ on some versions of Unix, particularly versions of
Solaris.

The yw command copies only the portion of the word from the character under to cursor to the end of
the word, and you can prepend a number that equals the number of words to be copied. If you use 2yw,
for example, and then move the cursor to the S in “Sentence one.” and enter the p command, you’ll get
the following:

Srown fox entence one.
The quick brown fox jumps over the lazy dog.
Sentence three.

Using the P command results in the following:

rown fox Sentence one.
The quick brown fox jumps over the lazy dog.
Sentence three.

These are very powerful commands. Work with them a bit to get more comfortable with the output they
give you.

Try It Out Use Commands in Vi
Create a new file, enter some text, and try out some of the commands you’ve learned.

1. Open a new file called beginning_unix_testfile in the /tmp directory:

vi /tmp/beginning_unix_testfile

2. You are in command mode. Change to insert mode by typing i.

3. Type the following, making sure to press Enter at the end of each line:

The quick brown fox jumps over the lazy dog.
Sentence two.
Sentence three.
Sentence four.
Vi will never become vii.
Sentence six.

4. Press Esc to go into command mode.

5. Type 1G to move to the first line, and then type 4l to position the cursor over the q in quick.

6. Type cw, which removes the word quick and puts you into insert mode.

140

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 140

7. Type the word slow, and then press Esc. Now your file should look like this:

The slow brown fox jumps over the lazy dog.
Sentence two.
Sentence three.
Sentence four.
Vi will never become vii.
Sentence six.

8. Type 2j to move down two lines. The cursor will be on the last e in Sentence on line 3.

9. Type r and then type E. The sentence should look like this:

SentencE three.

10. Type k once to move up one line. Type 2yy to copy two lines.

11. Type 4j to move to the last line, and then type p to paste the text from the buffer. Here’s the
result:

The slow brown fox jumps over the lazy dog.
Sentence two.
SentencE three.
Sentence four.
Vi will never become vii.
Sentence six.
Sentence two.
SentencE three.

12. Press Esc and then type q! to exit the file without saving the output.

How It Works
This exercise has given you the opportunity to try out some of the vi commands you’ve learned so far in
this chapter. Here are the key points to your success with vi:

❑ You must be in command mode to use commands. (Press Esc twice at any time to ensure that
you are in command mode.)

❑ You must be careful to use the proper case (capitalization) for all commands.

❑ You must be in insert mode to enter text.

There are quite a few commands, as you’ve noticed, and the command tables in this chapter are a good
reference while you learn your way around vi.

Help!
There are a lot of commands to use in vi, so don’t be surprised if you can’t remember all of them or what
they do. In command mode, you can always type man vi at the command line (console) to get the full
online manual page, including information on the different vi modes and other pertinent information.

141

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 141

If you make a major mistake and want to quit the file, simply type :q! to exit from the file without sav-
ing. Alternatively, use :w filename to save the file with another name — in case you want to look it
over to determine what mistakes you made. In this instance, none of your changes are written to the
original file.

If you made a lot of corrections and don’t want to lose some of your previous edits, the undo commands
u and U can be useful. The u command undoes the last edit, so that if you accidentally deleted 3,000 lines
with 3000dd, for example, you could type u in command mode and the deleted 3,000 lines would be put
back in place. The U command restores the current line, so that if you accidentally deleted “The quick,”
you could type U in command mode and the line would revert to its original “The quick brown fox
jumps over the lazy dog.”

Some versions of vi allow unlimited undo commands while others keep an undo in a buffer only until
the next command that requires the buffer, such as another yank or delete command. There are ways to
save to the buffer, but that is beyond the scope of this chapter. Refer to the online man page for vi for
more information on buffer manipulation.

Another common issue involves system messages that show up in the middle of a file that you’re edit-
ing. As you can imagine, these messages can cause you some confusion by appearing while you are edit-
ing text. For example, say you’re editing the /etc/syslog.conf file shown in Figure 7-8.

Figure 7-8

See the “Broadcast Message...” lines? Those are not part of the file — it’s a system message that’s popped
up in the middle of the editing project. Use the key combination Ctrl+L to remove the messages and
return to the original text.

142

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 142

Running Commands
Vi has the capability to run commands from within the editor. To run a command, you only need to go
into command mode and type :! command. For example, if you want to check whether a file exists before
you try to save your file to that filename, you can type :! ls and you will see the output of ls on the
screen. When you press any key (or the command’s escape sequence), you are returned to your vi session.
This can be very helpful when you don’t want to interrupt your vi session but you need the output of a
command.

Be aware that if you give someone root capabilities to vi (such as with sudo), even if you specify the file,
that person can run commands using the :! sequence, presenting a serious security vulnerability. Never
give the capability to run root or any other interactive editor with sudo, RBAC, and so on.

Replacing Text
Vi’s substitution command (:s/) enables you to quickly replace words or groups of words within your
files. The syntax for the command is :s/characters to be replaced/what to replace with/.
For instance, to replace an occurrence of “misspelled” with “spelled correctly,” you’d use the command:

:s/misspelled/spelled correctly/

Well, things aren’t always as easy as they first appear. The file shown in Figure 7-9, for example, has 84
instances of the word misspelled.

Figure 7-9

Note that the cursor is on the first line. Enter the command :s/misspelled/spelled correctly/,
and you get the result shown in Figure 7-10.

143

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 143

Figure 7-10

Not exactly the result you wanted, is it? Only the first instance of misspelled was changed because that’s
how substitution works: the first instance found on the same line as the cursor is changed. To change
every instance on a line, run:

:s/misspelled/spelled correctly/g

The g stands for globally, and in Unix that means on the line containing the cursor. The result of this
command is that all occurrences on the cursor’s line are changed, as shown in Figure 7-11.

Figure 7-11

144

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 144

If you want to change the spelling on a number of consecutive lines, specify the line numbers in the
following syntax:

x,ys//characters to be replaced/what to replace with/

where x is the number of the first line of changes and y is the number of the last line. To replace every
instance of “misspelled” with “spelled correctly” in lines 2 through 8, you could try the following
command:

:2,8s/misspelled/spelled correctly/

The result is shown in Figure 7-12 (the .set nu option has been turned on to show the line numbers,
which are not saved with the file).

Figure 7-12

That didn’t do the job the way you anticipated, did it? Only the first instance of “misspelled” on each
line was replaced. To change every instance of “misspelled” to “spelled correctly” on lines 2 through 8,
you’ve got to put the g at the end of the command, like this:

:2,8s/misspelled/spelled correctly/g

To replace every instance of “misspelled” in the entire file, here’s the command you need:

:1,$s/misspelled/spelled correctly/g

This replaces every instance from the first line (1) to the end of the file ($). You need the g at the end,
remember, or only the first instance of “misspelled” on each line will change.

145

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 145

If you don’t want to accept all substitutions blindly, you can add the confirm command c to the very end
of the command sequence:

:1,$s/misspelled/spelled correctly/gc

The result is that you are asked to confirm every change by typing yes or no.

Metacharacters — characters that have special meaning in Unix — can be used to specify certain
sequences. The *, for example, represents zero or more occurrences. To replace all instances of “particu-
lar” and “particularly” with “essential,” use the following command:

:1,$s/particular*/essential/g

Metacharacters are discussed in depth in Chapter 8.

The \ (backslash) specifies that the metacharacter after it will mean the exact character. To replace every
instance of * with hello, here’s the command to use:

:1,$s/*/hello/g

The last set of expressions to be discussed in this section are the \< and \>, which match characters at
the beginning or end of a word respectively. To find all instances of “the” at the beginning of a word
(such as “theater”) but not when it occurs anywhere else (such as “lathe” or “scathed”) and replace them
with “none,” you can type:

:1,$s/\<the/none/g

This replaces the word “the” with “none,” replaces instances of “the” with “none” in “theater” (which
becomes “noneater”), and leaves “bathed” and “lathe” as before.

These are some of the basic expressions that can be used; you’ll learn about others in Chapter 8.

Versions of Vi
The original version of vi is often emulated, so that most people are not using it at all but are using
another version. For instance, most Unix systems run Vim, which is vi improved, although most users
don’t realize it because Vim is set up to run like vi unless a .vimrc file is set. The following list describes
many of the vi incarnations offered now, but the original vi is still available on most systems. Learning
the original is beneficial in case the other versions are not installed.

❑ Vim — Vi IMproved. The most-used version of vi in the Unix world. It has all the features of vi,
plus some major improvements, including syntax highlighting and multiple levels of undo. If
you are using vi on a modern system, you are most likely using Vim. More information is avail-
able at http://vim.org.

❑ Elvis — An updated version of vi with some extra features. You’ll find more information at
http://elvis.vi-editor.org.

146

Chapter 7

10_579940 ch07.qxd 3/21/05 6:04 PM Page 146

❑ Vile — Vi Like Emacs. It tries to bring the best of both vi and Emacs together. More information
is available at http://dickey.his.com/vile/vile.html.

❑ Nvi — BSD version of vi. More information is available at www.bostic.com/vi.

You’ll find many other versions of vi listed at the vi lovers’ home page, http://thomer.com/vi/vi.html.

Summary
This chapter covered the use of vi from the ground up, including:

❑ Using keys (commands) to move within a file

❑ Searching for words or strings of text

❑ Saving files and exiting vi

❑ Editing files (insert mode)

❑ Searching for and replacing text in files

❑ Using metacharacters in searching and replacing

You’ve got the basics of editing files with vi now. Before you move on to Chapter 8, in which you’ll learn
about regular expressions, solidify your new vi knowledge by doing the following exercises.

Exercises
1. How can you be absolutely sure what mode you are in when using vi?

2. How do you search for the word “computer” in a file while in command mode? How would
you continue the search in the opposite direction?

3. How would you copy 5 lines of text and then insert them 10 lines down?

4. How would you replace the word “person” with “human” across an entire file, even if it existed
multiple times on the same line?

147

Editing Files with Vi

10_579940 ch07.qxd 3/21/05 6:04 PM Page 147

10_579940 ch07.qxd 3/21/05 6:04 PM Page 148

8
Advanced Tools

In Chapter 6, you learned basic Unix commands and how they work. Now you’ll build on that
knowledge and expand your command library. This chapter tackles advanced commands and regu-
lar expressions (formulas for matching strings that follow specific patterns). Regular expressions are
important, and they’re also quite challenging when you’re just learning about them. Don’t worry,
though, because this chapter provides a good foundation for your learning.

Regular Expressions and Metacharacters
A regular expression is a syntactical set or phrase that represents a pattern of text or strings.
Regular expressions enable you to represent a varying array of characters with a much smaller set
of predefined characters. They often include metacharacters — characters that represent another
set or group of characters or commands.

No discussion of regular expressions and metacharacters is useful without examples, so create a
file called /tmp/testfile that you can use as you work your way through this chapter: Here’s
what to put in the file (note the capitalization and punctuation):

Juliet Capulet
The model identifier is DEn5c89zt.
Sarcastic was what he was.
No, he was just sarcastic.
Simplicity
The quick brown fox jumps over the lazy dog
It’s a Cello? Not a Violin?
This character is (*) is the splat in Unix.
activity
apricot
capulet
cat
celebration
corporation
cot
cut
cutting

11_579940 ch08.qxd 3/21/05 6:07 PM Page 149

dc9tg4
eclectic
housecat
persnickety
The punctuation and capitalization is important in this example.
simplicity
undiscriminating
Two made up words below:
c?t
C?*.t
cccot
cccccot

Save the file; you’ll use it throughout this chapter. Ready to explore metacharacters?

Understanding Metacharacters
Metacharacters are useful in reducing the amount of text used with commands and for representing
groups of text with a minimal set of characters. The following list describes shows some of the more
common metacharacters. The results shown in each case represent output from your testfile if the
example search were run on it. The matching characters in the result list are boldfaced to make it easier
to see the match.

If you have used Microsoft Windows or MS-DOS operating systems, you may be familiar with wild-
cards, which are somewhat similar to metacharacters. Do not confuse wildcards (available through the
shell) with metacharacters, though, because they are interpreted differently and can produce unexpected
results if you try to use them interchangeably.

❑ .— Description: Dot or period. Represents one character.

Example: Find any instances of the letter c and the letter t with exactly one character
between them:

c.t

Results from testfile:

Simplicity cut simplicity
apricot cutting c?t
cat dc9tg4 cccot
cot housecat cccccot

❑ []— Description: Square brackets. Result will match any one of the characters inside them.

Example: Find any instances of the letter c and the letter t with only one of the letters in
the square brackets between them:

c[aeiou]t

Results from testfile:

Simplicity cot simplicity
apricot cut ccot
cat housecat ccccot

150

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 150

❑ *— Description: Asterisk (splat). Represents zero or more occurrences of other characters.

Example: Find any instances of the letter c and the letter t with zero or more characters
between them.

c*t

Results from testfile:

Juliet Capulet
The model identifier is DEn5c89zt.
Sarcastic, was what he was.
No, he was just sarcastic.
Simplicity
The quick brown fox jumps over the lazy dog
It’s a Cello? Not a Violin?
This character is (*) is the splat in Unix.
activity
apricot
capulet
cat
celebration
corporation
cot
cut
cutting
dc9tg4
eclectic (also eclectic; same word so only one instance shows)
housecat
persnickety
The punctuation and capitalization is important in this example.
simplicity
undiscriminating
c?t
c?*.t
cccot
cccccot

❑ [^ insert_character(s)]— Description: Square brackets with a caret between them. Do
not match any of the characters following the caret.

Example: Find any instances of the letter c and the letter 5 with none of the characters
inside the brackets between them.

c[^aeiou]t

Results from testfile:

dc9tg4
c?t

❑ ^insert_character — Description Match the sequence only if it is at the beginning of the line.

Example: Find any instances of the exact string ca at the beginning a line:

^ca

151

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 151

Results from testfile:

capulet
cat

Without the ^, the output would be instances of ca anywhere on the line:

Results from testfile:

Sarcastic was what he was.
No, he was just sarcastic.
capulet
cat
housecat
The punctuation and capitalization is important in this example.

❑ ^[insert_character(s)]— Description: Caret preceding a bracketed sequence. Match any
one character inside brackets; match sequence at the beginning of the line.

Example: Find all instances of the letter c at the beginning of the line, any one of charac-
ters in the brackets, and the character t.

^c[aeiou]t

Results from testfile:

cat
cot
cut
cutting

If the ^ were not in the syntax, the output would be instances of c[aeiou]t anywhere on
the line:

Simplicity
apricot
cat
cot
cut
cutting
housecat
simplicity
cccot
cccccot

❑ $— Description: Dollar sign. Match the occurrence at the end of the line only.

Example: Find the character c and the character t at the end of the line, with zero to any
combination of characters in between:

c*t$

Results from testfile:

Capulet cat c?t
DEn5C89zt cot c?*.t

152

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 152

apricot cut cccot
capulet housecat ccccot

❑ \— Description: Blackslash. Removes special meaning from the character immediately follow-
ing, so that a ? is taken literally rather than as a metacharacter.

Example: Find all instances of the character c, a literal ?, and the character t:

c\?t

Results from testfile:

c?t

❑ ?— Description: Question mark. Represents zero or one character (not to be confused with *,
which matches zero, one, or many characters). Not available with all programs in Unix.

Example: Find all instances of the character c and the character t with zero or one char-
acter between them:

c?t

Results from testfile:

Simplicity
eclectic
activity
housecat
apricot
The punctuation and capitalization is important in this example.
cat
simplicity
cot
c?t
cut
cccot
cutting
cccccot
dc9tg4

❑ [a-z]— Description: Full lowercase alphabet designation inside brackets. Match all occur-
rences of any single letter.

Example: Match all instances of the character c and the character t with a single instance
of a letter a through z between them.

c[a-z]t

Results from testfile:

Simplicity cut simplicity
apricot cutting cccot
cat housecat cccccot
cot

153

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 153

❑ [0-9]— Description: Matches single instances of all numbers 0–9.

Example: Find all instances of the letter c and the letter 5 with any single instance of a
number between 0 and 9 between them.

c[0-9]t

Results from testfile:

dc9tg4

❑ [d-m7-9]— Description: Matches a single occurrence of any character d through m or 7
through 9. This illustrates how these commands can be grouped.

Example: Find all instances of the letter c and the letter t with a single instance of any of
the letters c through t or a single instance of any number 0 through 4.

c[c-t0-4]t

Results from testfile:

Simplicity dc9tg4
apricot cccot
cot cccccot
simplicity

The metacharacters listed here are commonly used and generally available with most commands. Not all
metacharacters or regular expressions work with every program, and sometimes only a subset of
metacharacters is supported within a program. Read the man page for the command you are going to
use to determine its support for the metacharacters.

Metacharacters and regular expressions are typically used with the following commands (although there
are others):

awk fgrep
ed less
emacs more
expr sed
grep vi
egrep

Regular Expressions
Regular expressions can be extremely simple or very complex, depending on the program they are used
with and what you are looking for. They can include metacharacters or regular characters. A regular
expression is the syntax used to match something, and metacharacters enable you to expand a more

154

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 154

complex group of regular characters with a smaller subset of predefined characters. The following regu-
lar expression is a very simple one that that would match any single character between the brackets:

c[a-n]n

A regular expression can be as complicated as the following:

[0-9][0-9][0-9]\.[0-9][0-9][0-9]\.[0-9][0-9][0-9][0-9]

This would match the standard format for a U.S. telephone number (for instance, 555.555.0000). Notice
that the \ (backslash) escapes the . (period) so that the period represents a literal period and not what
the period metacharacter typically means (one or more characters).

Learning to use regular expressions and metacharacters can be a long and involved process, but under-
standing these basics will assist you in doing what is needed on your Unix system. A full discussion of
regular expressions is beyond the scope of this book, but Beginning Regular Expressions by Andrew Watt
(Wiley, ISBN 0-7645-7489-2) is a good reference for learning more about this important topic.

Using SFTP and FTP
SFTP (Secure File Transfer Protocol) and FTP (File Transfer Protocol) are the two major protocols for
transferring files between Unix systems. The syntax of the sftp and ftp commands is similar to those
of telnet and ssh in that you initiate the command and then identify where you want to log in. For
instance, to sftp to the Mac OS X machine named darwin (remote machine with an IP address of
192.168.1.58), you’d type:

sftp 192.168.1.58

or

sftp darwin

The output will look much like Figure 8-1.

For ftp, you’d type:

ftp 192.168.1.58

or

ftp darwin

155

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 155

Figure 8-1

If you typed the latter, the output would be similar to:

$ ftp darwin
connected to darwin
Name (darwin:beginningunix): beginningunix
331 Password required for beginningunix
Password:
230-

Welcome to Darwin!
230 User beginningunix logged in.
Remote system type is Unix
Using binary mode to transfer files.
fpt>

Figure 8-2 shows the output of the ftp 192.168.1.58 command. You can see that’s it’s pretty much
the same, except that the machine’s IP address is used instead of its name (darwin).

For the ftp darwin example, here’s the sequence of events that occurs, beginning with the initial
command:

$ ftp darwin

156

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 156

Figure 8-2

You do not have to use the name of the machine to connect, as you know. You could use its IP address
instead, as Figure 8-2 illustrates.

The system announces the successful connection to the remote machine:

connected to darwin

You’re connected but have not been authenticated, so you are prompted for your username. Type it after
the colon, and then press Enter or Return. (Pressing Enter or Return without typing your username
allows your default username — the one that you are logged in as on the local system — to be provided
to the remote machine. You can see the default name in the parentheses after Name. Often, the default
name is the same as your remote-machine username.). Then you are prompted for your password. You
must enter your correct system password for the remote system (it may or may not be the same as your
password for the local system).

Name (darwin:beginningunix): beginningunix
331 Password required for beginningunix
Password:

With your credentials accepted, the remote machine provides you with introductory information:

230-
Welcome to Darwin!

230 User beginningunix logged in.

157

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 157

Remote system type is UNIX.
Using binary mode to transfer files.

The fourth line indicates this is a Unix system, and the fifth line indicates that the binary mode is the
default download type. Binary mode means that the file will be downloaded at the lowest-level com-
puter representation possible, using 1s and 0s, which is the core computer language. Binary download-
ing is the safest form, but sometimes takes longer than the other download type, ASCII, which typically
consists of letters and symbols on the keyboard. The ASCII-type download is acceptable for text files,
but binary mode is best for binary-file, executable-program, and compressed-file downloads.

After you have sftp’d or ftp’d into a Unix system, you receive a modified prompt, sftp> or ftp>
respectively. When you are sftp’ing or ftp’ing, you are not using the typical shell environment you
would if you had logged in interactively and are therefore limited to a specific set of commands. You are
also limited to a specific set of commands for the movement of files. Type help and press Enter or type ?
and press Enter to see a list of the commands, as shown in Figure 8-3.

Figure 8-3

158

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 158

To see more specific information about a command, type help command. Following are some of the
commands available during sftp/ftp sessions (you learned about some of these commands —rmdir,
mkdir, pwd, cd, and ls— in Chapter 4):

Command Description Available Available

in SFTP in FTP

ascii Changes the transfer type to ASCII (good for text files). No Yes

binary Changes the transfer type to binary (good for binary files). No Yes

bye Ends the ftp session. Yes Yes

cd Changes directory; used to traverse through the file Yes Yes
system.

dir or ls Shows the contents of a directory. ls, yes; Yes
dir, no

get Retrieves file from remote server. Yes Yes

hash Turns on hash sign (#) to indicate download progress No Yes
(default is for each # sign to equal 1024 bytes).

help Shows list of commands. Yes Yes

? Shows list of commands (same as help). Yes Yes

lcd Changes the current local directory to that indicated. Yes Yes

pwd Shows the current working directory. Yes Yes

mdelete Deletes files on remote server. No Yes

mget Retrieves files from remote server. No Yes

mkdir Creates a directory on the remote server. Yes Yes

more Shows the contents of a file. No Yes

mput Copies a file from the local machine to the remote No Yes
machine.

put Copies a file from the local machine to the remote Yes Yes
machine.

rmdir Removes a directory on remote server Yes Yes

size Shows the size of a file on the remote system. No Yes

system Shows the operating system of the remote machine. No Yes

After logging in to the remote FTP server, use the cd (change directory) command to move around the
file system:

ftp> cd /home/myfiles

159

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 159

To retrieve a file from a remote FTP or SFTP server, use the get command. Here’s an example of how to
retrieve the file /home/myfiles/myfile.txt from the remote ftp server (darwin):

ftp> get myfile.txt
200 PORT command successful
150 Opening Binary mode data connection for ‘myfile.txt’ (722 bytes).
226 Transfer complete.
722 bytes received in 0.036 seconds (19 Kbytes/s)
221 Thank you for using the FTP service on Darwin
ftp>

The first line contains the get command followed by the name of the remote file (myfile.txt) that will
be retrieved and put into the current directory on the local system. The remote system then reports that
the command was successful (200 PORT command successful). The third line shows that the down-
load is beginning and that file is 722 bytes in size. The system reports that the transfer is complete, and
then tells you the details: how long it took to download the file and at what speed. The sixth line is a
simple pleasantry, thanking you for using the system.

If you had typed the command hash before using the get command, you would have seen a succession
of hash marks (#) indicating the progression of the download, which for long files can assist in deter-
mining that the FTP session has not stalled.

You are returned to a command prompt (ftp>) so that you can execute other FTP commands. In this
example, the quit command terminates the FTP session, ending your connection to the remote machine
and returning you to the local system, as indicated by the $ prompt:

ftp> quit
$

The sftp command operates in almost an identical manner as ftp and provides similar output, but it
also affords the capability to set up secure, password-free logins and other functionality. The primary
difference between FTP and SFTP is that FTP does everything unencrypted or in plain text, whereas
SFTP uses encryption, which hides the information and data being transferred between machines. All
you do is use sftp instead of ftp to initiate the connection. Your session would have the sftp> prompt
instead of the ftp>. SFTP offers many more advantages over FTP; you can read more about them at
www.openssh.org.

More Advanced Commands
You’ll find yourself using the commands introduced in this section because they add a great deal of
functionality to your work on Unix.

grep
grep is one of the most useful commands in Unix. It searches files for a sequence you specify and then
prints the results. This may seem trivial, but you may find yourself using this command daily, searching
for and within files.

160

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 160

Grep stands for global regular expression print, which is from an ed (pre-vi) editor’s set of commands
that was initiated with the g/re/p command. That command sequence was used so often that it was
decided to create a separate command with the functionality to search and print. The consolidated com-
mand is grep.

The command structure for grep is:

grep string_to_search_for file_to_search

A simple grep would be a search for the word root in the /etc directory and its subdirectories:

grep root /etc/*

This would result in significant output because, as you might guess, there are many files that contain the
word root. grep supports the use of most of the metacharacters previously described, depending on
your version of the command.

grep also has a -v argument, which enables you to search for everything but a named string. To search
/etc/passwd for all accounts except the root string, you’d type:

grep -v root /etc/passwd

The output would show the contents of the /etc/passwd file that didn’t contain the string root.

grep also can be combined with other commands, as this example shows:

cat /etc/passwd | grep root

This produces the same output as the preceding command would without the -v option, but it demon-
strates how you can use grep to search for specific characters from the output of another command.
The grep command can be combined with almost any other command to create useful output.

find
The find command is used for finding files in the directory structure. The syntax for find is:

find path_to_look_in options

To find the file passwd in the /etc directory, you can use the –name option:

find /etc –name passwd

The resulting output shows any matches it finds within the directory and subdirectories of the specified
path.

The find command comes with many options. The following table describes those most frequently
used:

161

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 161

Option Description

--help Shows help information for the find command.

--maxdepth n Descends the directory structure to n depth. For instance, to search only
the directory listed and no subdirectories, you would use --maxdepth 0.

--mindepth n Descends a minimum of n subdirectories.

--mount Prevents searches over other file systems (such as those that are
remotely mounted). Searches that span many different file systems tax
network resources.

There are other options to use in searching for files; refer to the man pages for more information. The fol-
lowing table lists some of the tests (arguments that refine the output) available for the find command.
These tests do not work without the find command and options.

Test Description

+n Searches for anything greater than the number n.

-n Searches for anything less than the number n.

n Searches for anything exactly matching the number n.

-amin n Searches for files that were last accessed n minutes in the past.

-atime n Searches for files that were last accessed n days ago (e.g., atime 1
searches for a file accessed 1 day ago).

-fstype type Searches for the specified file system type. Options include nfs, ufs.

-gid n Searches for files with a gid (numeric group ID) equal to n.

-group group_name Searches for files that have a group name equal to group_name.

-name filename Searches for files named filename. You can use metacharacters to
make the search easier.

-perm mode Searches for files with permissions set exactly to mode (absolute or
symbolic).

-size n Search for files with the size specified as n. You can use c for bytes and
k for kilobytes if you want the output in a format other than the default
512-byte blocks. To find a 2-kilobyte file, you’d use -size 2k.

-type file_type Searches for files of file_type. The options are b for block device, c
for character device, d for directory, p for named pipe, f for regular file,
l for symbolic link, and s for socket.

-uid n Searches for file that has the uid (user ID) n attached.

-user username Searches for files that have username attached.

162

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 162

There are many other options available, including some for specially formatted output and some to use
regular expressions. For example, to find all files on the system owned by the user beginningunix in the
/home directory (and all of its subdirectories), you would use a command similar to:

find /home -user beginningunix

Say that your system administrator contacted you to make some space in your home directory. You have
a lot of files in your home directory, and you aren’t sure which files may be causing the problem. To
search for files larger than 2,000,000 kilobytes (approximately 2 gigabytes), you can use the following
command to show all files that meet that criterion:

find /home/beginningunix -size +2000000k -print

As most Unix commands do, find has many options; refer to the man page to determine if there are
options that would suit your particular needs.

sort
The sort command is a powerful little utility that enables you to sort the output of a command or file in
a specified order. The options for sort are described in the following table:

Option Description

-d Sorts via dictionary order, ignoring non-alphanumerics or blanks.

-f Ignores case when sorting.

-g Sorts by numerical value.

-M Sorts by month (i.e., January before December).

-r Provides the results in reverse order.

-m Merges sorted files.

-u Sorts, considering unique values only.

The sort command can be quite useful; you’ll see why if you try it out with its options.

Try It Out Sort a File
1. Create a file called /tmp/outoforder with the following text:

Zebra
Quebec
hosts
Alpha
Romeo
juliet
unix
XRay
xray

163

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 163

Sierra
Charlie
horse
horse
horse
Bravo
1
11
2
23

2. Sort the file by dictionary order:

sort -d /tmp/outoforder

The results are:

1
11
2
23
Alpha
Bravo
Charlie
Quebec
Rome
Sierra
XRay
Zebra
horse
horse
horse
hosts
juliet
unix
xtra

Notice that the strings beginning with an uppercase letter have come before any of the lower-
case words.

3. The word horse is in the file three times. To remove the extra instances of it in your sort, you can
use:

sort -du /tmp/outoforder

How It Works
If you sort using a file as the input as you did here, the sort does not overwrite or adjust the contents of
the input file. After running these two commands on the /tmp/outoforder file, the order of the file is
the same it originally was. That’s because the sort command sends the output to standard output (usu-
ally the screen). To have the command write to a file, you need to use the > or >>, the write to or append
to file operators.

Some new users use sort and then redirect the output back into the input file. This removes the con-
tents of the file or creates other possibly undesirable effects, so be sure not to try this.

164

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 164

The sort command becomes more powerful when combined with other commands such as grep to
provide a structured, orderly output that can be parsed by the user.

tee
The tee command enables you to split the output of a command to multiple locations. For instance, if
you need to see the output of a command on the screen, but you also need to have the output written to
a file for later use, you can use tee. To run this command, you simply need to define a command and
then identify where you want the output file to go. Here’s an example:

ps -ef | tee /tmp/troubleshooting_file

shows the output of the ps command on the screen and also writes it to /tmp/troubleshooting_file,
where it can be viewed later. To append to the file instead of overwriting, you use the -a option:

ps -ef | tee -a /tmp/troubleshooting_file

You can specify as many files as you want after the tee, and the output will go to each file.

script
The script command enables you to record your entire interactive login session. It captures and places
in a file every keystroke you make (and its output) from the time you start it until you end it. script is
especially useful for troubleshooting problems or using the contents of a session for later review. To use
script, you simply need to type it with the -a option and a filename:

script -a /tmp/script_session

Without the -a option, the specified file, if it already exists, will be overwritten.

Everything you type after the script command is recorded in the file you indicate, /tmp/script in
this example. If you don’t indicate a filename, the command creates a file called typescript in the
directory you start the command in. When you have completed your scripting session, type exit to end
it. Be careful not to leave the script session running, because the file you create can begin taking up a sig-
nificant amount of space, to the point of filling up your file system.

wc
The wc command enables you to print a count of the total number of newlines, characters, or words
within a file. It has the options described in the following table:

Option Description

-c Shows the count of characters in the file.

-l Shows the count of newlines in the file.

-w Shows the count of words in the file.

165

Advanced Tools

11_579940 ch08.qxd 3/21/05 6:07 PM Page 165

To show the count of words in a file called /tmp/countfile, for example, you’d use the following
command:

wc -w /tmp/countfile

The resulting output will show the count of words in the specified file. The other options work in a simi-
lar manner.

Using wc without any of the options provides all of the results: characters, newlines, and words.

Summary
In this chapter, you learned the basics of using metacharacters and regular expressions, and you were
introduced to the sftp and ftp commands. You also explored some of the more advanced Unix com-
mands, including grep, find, and sort.

As you continue to use Unix, your toolbox will continue to grow. Most things you need to accomplish on
a Unix system have a command associated with the task, and it is highly recommended you use the man
pages in conjunction with the man page searching option to find tools you need for further advancement.

Exercises
1. Demonstrate how to use the grep command to find the service telnet.d in the

/etc/inetd.conf file.

2. You know there’s a huge (more than 5 million kilobytes) file in the /tmp directory that was last
accessed four days ago. You can’t remember the filename. How would you search for it?

166

Chapter 8

11_579940 ch08.qxd 3/21/05 6:07 PM Page 166

9
Advanced Unix Commands:

Sed and AWK

As you build your skills in the Unix environment, simple commands may not offer all the func-
tions you need. Most programmers rely on advanced Unix commands to work with scripts and
programs, no matter what language they are using. In this chapter, you learn more about two
powerful commands that can bring a new level of flexibility and ease to your programming and
general Unix work:

❑ sed: a text editor that works on full streams of text

❑ AWK: an output formatting language

The commands sed and awk are somewhat unusual as common Unix commands go. Rather than
providing a mechanism to navigate directories or create or delete files, these two commands per-
form operations primarily on existing text. This text can be the contents of an administrative file,
such as /etc/passwd; the output from another command, such as ls; or the contents of an actual
text file that you’ve created with a text editor — perhaps a program or a lengthy text file, such as
the chapter of a book.

The sed and awk commands find their roots in the old line editor, ed. Almost nobody uses ed any-
more, but it can still be found on most Unix systems. (It’s probably on yours! At the very least, code
to install ed is probably on your installation disks or included in your installation download.) ed is
a command-line program for editing text files, written in the early days of computing. In those
days, a terminal screen could not display multiple lines of output, so you could work on only one
line at a time of any given file, no matter how large or complex. The ed editor was devised to work
within this restriction, offering a number of commands used to navigate through files, perform edit-
ing operations, and locate specific lines of files, then perform a specified task on those lines.

If you are interested in the ed editor, try typing ed at the command prompt to see whether it is
currently installed on your system (Type q to quit ed). Because it is such a basic program, the ed
man page is the best way to learn more about this editor: Type man ed at the prompt. If you do
not have the man page installed, you can read it on the Web at http://unixhelp.ed.ac.
uk/CGI/man-cgi?ed

12_579940 ch09.qxd 3/21/05 6:12 PM Page 167

Sed
The sed command does much the same thing as ed. The main difference is that sed performs these
actions in a noninteractive way. Sed is a stream editor (thus the name), and it is designed to work on a
specified stream of text according to rules set by the user beforehand. This text stream is usually the out-
put of a previous operation, whether instigated by the user or part of a list of commands that run auto-
matically. For example, the output of the ls command produces a stream of text — a directory listing —
that can be piped through sed and edited. In addition, sed can work on files. If you have a group of files
with similar content and need to make a particular edit to the contents of all these files, sed will enable
you to do that very easily. For example, have a go at the following “Try it Out” section, in which you
combine the contents of two files while at the same time performing a substitution for the name “Paul”
in both files.

Try It Out Work with Sed
Editing commands for sed can be provided at the command line:

1. Create two files, each with a list of first names, in vi:

% vi names1.txt
Paul
Craig
Debra
Joe
Jeremy

% vi names2.txt
Paul
Katie
Mike
Tom
Pat

2. At the command line enter and run the following command:

% sed -e s/Paul/Pablo/g names1.txt names2.txt > names3.txt

3. Display the output of the third file to discover the resulting list of names:

% cat names3.txt
Pablo
Craig
Debra
Joe
Jeremy
Pablo
Katie
Mike
Tom
Pat
%

168

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 168

How It Works
The sed utility reads the specified files and/or the standard input and modifies the input as directed by
a list of commands. The input is then written to the standard output, which can be redirected if need be.

In this example, the sed command is searching for all instances of the name Paul in the two files pro-
vided in the command-line argument and replacing them with the name Pablo. After the search and
replace has been completed, the output is redirected from standard out to a new file called names3.txt.
Notice the trailing g in the command, s/Paul/Pablo/g:

% sed s/Paul/Pablo/g names1.txt names2.txt > names3.txt

This specifies that sed should look globally. Without that trailing g, if the name Paul happened to be on
the same line twice, only the first would be substituted.

Note that while only one line from each file was affected by substitution, all the lines from both files are
displayed, in the order they are processed, in the output from sed. The original files are unchanged; only
the output, or in this example the file created from the output, contains the substitution of Pablo for Paul.

Using the -e Option
Multiple commands may be specified by using the -e option:

% sed -e ‘s/Paul/Pablo/; s/Pat/Patricia/’ names1.txt names2.txt
Pablo
Craig
Debra
Joe
Jeremy
Pablo
Katie
Mike
Tom
Patricia
%

The -e option is necessary when supplying more than one editing command as a command-line argu-
ment to sed. Note that while enclosing the instructions in single quotes is not required (they weren’t
used in the first sed example), they should be used in all cases. Enclosing the instructions in quotes helps
the user visualize what arguments are related to editing and what arguments are related to other infor-
mation, such as which files to edit. Moreover, the enclosing single quotes will prevent the shell from
interpreting special characters or spaces found in the editing instruction.

There are three ways for providing a series of editing instructions for sed to process at the command
line. One way is to use the semicolon, such as in the previous example, to separate editing instructions.

Another is to precede each individual editing argument with the -e switch, like this:

% sed -e ‘s/Paul/Pablo/g’ -e ‘s/Pat/Patricia/g’ names1.txt names2.txt

169

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 169

A third option is to use the multiple-line entry capability of the shell, if available. The following is how
that would appear within the Bash shell environment, but not C shell:

% sed ‘
> s/Paul/Pablo/
> s/Pat/Patricia/ names1.txt names2.txt’
Pablo
Craig
Debra
Joe
Jeremy
Pablo
Katie
Mike
Tom
Patricia

Sed Files
Of course, no matter which of the three methods just described is used, none are practical when it comes
time to enter a long list of editing commands for sed on the command line. To provide a large series of
commands, sed has the capability to read a file full of commands that contains the editing instructions as
a single command-line argument. This is done using the -f option.

The file denoted with the -f argument simply specifies a text file with a series of actions to be performed
in sequence. Most of these actions could be done manually from within vi: replacing text, deleting lines,
inserting new text, and so on. The advantage is that all editing instructions are in one place and are exe-
cuted on a single pass. In the following “Try It Out,” you’ll put together a collection of commands that
will edit two files and place the results into a third file for safekeeping.

Try It Out Use Sed with Multiple Commands
1. Locate the two text files with a list of names from the previous example. Or simply create a new

list of names:

pdw% vi names1.txt
Paul
Craig
Debra
Joe
Jeremy

% vi names2.txt
Paul
Katie
Mike
Tom
Pat

2. Create a new file with vi called edits.sedscr and list a series of editing instructions for sed:

% vi edits.sedscr

170

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 170

s/Pat/Patricia/
s/Tom/Thomas/
s/Joe/Joseph/
1d

3. Invoke sed:

% sed -f edits.sedscr names1.txt names2.txt > names3.txt

The result is the following output in the names3.txt file:

Paul
Craig
Debra
Joseph
Jeremy
Paul
Katie
Mike
Thomas
Patricia

How It Works
When you use multiple commands in a file, enter one per line. Each command is individually executed
by sed, in the order it is listed within the file. Again, the original files are unchanged; only the output
contains the results of sed executing the script file.

As with a previous example, this example redirects the output to a file. In most cases, unless redirecting the
output of sed to another program, this is the preferred use of handling output from sed — capturing it in a
file. This is done by specifying one of the shell’s I/O redirection symbols followed by the name of a file:

% sed -f edits.sedscr names1.txt > names3.txt

Notice that the output is not redirected to the original file but to a new file that will be created after sed
generates its response.

Sed Commands
The sed editor set consists of 25 commands. Some of the most useful ones include the following:

Command Name Description

xa\ text Append Appends text following the command to each line matching
the given line address (x). Replace x with the number (address)
of the line to which you want to append text.

xd Delete Deletes the addressed line, or lines. That is, these lines are not
sent to standard output.

Table continued on following page

171

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 171

Command Name Description

xq Quit Quits when address is encountered. The addressed line first is
written to output along with any text appended to it by previ-
ous append or read commands, then sed quits processing
the file.

xr file Read file Reads contents of file and appends after the given line address.

xs/pattern/ Substitution Substitutes replacement for pattern on each addressed line. If
replacement additional information about how the substitution is to be exe-
text/flags cuted, such as if the substitution is to be made globally, on all

occurrences of the matching pattern, or only for a range of
matches, a flag is provided to modify the behavior of the sub-
stitution command.

[reg ex pattern] Write files Appends contents of pattern space to file. This command cre-
w file ates the file if it does not exist; if the file exists, its contents are

overwritten each time the script is executed. Multiple write
commands that direct output to the same file append to the
end of the file.

While these representative commands note a preference for line addresses when editing files, the line
address is optional with any command. Instead of a line address, a pattern described as a regular expres-
sion surrounded by slashes, a line number, or a line-addressing symbol can be used. For example, the
substitution commands used in the previous examples listed a pattern to match instead of a line address:

s/Joe/Joseph/

If a line address is used, most sed commands can accept processing one or more lines at a time. To han-
dle more lines, line addresses that indicate a range of lines need to be entered separated by a comma:
Here are a few examples:

Delete the first and second lines
1,2d
Delete lines 2 to 5
2,5d
append the text to the first and second lines
1,2a\ Hello World!
read the given file and append to after the second line
2r append_file.txt

However, a few commands, such as quit, accept only a single-line address. This makes sense because a
sed script cannot be applied to a range of lines — sed can only quit once.

Quit at the 100th line
100q

172

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 172

Multiple commands executed on the same address can be grouped together by surrounding the list of
commands in braces:

Delete the last line and quit
${d

q
}

The first command can be placed on the same line with the opening brace, but the closing brace must
appear on its own line. Also, notice the indentation of the commands inside the braces; spaces and tabs
at the beginning of lines are also permitted to allow for easier comprehension when reviewing a list of
commands to see what’s being done at each step. If the line address of the last line within a file is not
known, it can be specified using the dollar sign ($), as in this example.

For the sake of readability by any user, placing multiple commands on the same line is highly discour-
aged because sed scripts are difficult enough to read even when each command is written on its own line.

AWK
Sed works much like editing commands manually in any type of text editor, so it’s a good choice for
editing text in a file or from other commands in a noninteractive, batch environment. But sed does have
some shortcomings, such as a limited capability to work on more than one line at a time, and it has few
rudimentary programming constructs that can be used to build more complicated scripts. So there are
other solutions when it comes to scripting complex text processing; AWK, which offers a more general
computational model for processing a file, is one of them.

A typical example of an AWK program is one that transforms data into a formatted report. The data might
be a log file generated by a Unix program such as traceroute, and the report might summarize the data
in a format useful to a system administrator. Or the data might be extracted from a text file with a specific
format, such as the following example. In other words, AWK is a pattern-matching program, akin to sed.

Try It Out Use AWK
Try out this one awk command at the command line:

%awk ‘{ print $0 }’ /etc/passwd

The results will look something like the following, depending on the entries in the /etc/passwd file:

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
apache:x:48:48:Apache:/var/www:/sbin/nologin
webalizer:x:67:67:Webalizer:/var/www/usage:/sbin/nologin

173

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 173

ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
pdw:x:500:500:Paul Weinstein:/home/pdw:/bin/bash
%

How It Works
AWK takes two inputs: a command, set of commands, or a command file and a data or data file. As with
sed the command or command file contains pattern-matching instructions for which AWK is to use as a
guideline for processing the data or data file.

In this example, AWK isn’t processing any data but is simply reading the /etc/passwd file’s contents
and sending the data unfiltered to standard out, much like the cat command. When AWK was invoked,
it was provided with the two pieces of information it needs: an editing command and data to edit. The
example specifies /etc/passwd as input file for data, and the edit command simply directs AWK to
print each line in the file in order. All output is sent to standard out (which can be directed elsewhere),
a file, or another command.

Extracting with AWK
The real working power of AWK is in extracting parts of data from a larger formatted body.

Using the /etc/passwd file again, the following command takes two of the fields from each entry in the
/etc/passwd file and creates a more human-friendly output:

% awk -F”:” ‘{ print “username: “ $1 “\t\t\t user id:” $3 }’ /etc/passwd

The results will be something similar to this:

username: root user id:0
username: bin user id:1
username: sync user id:5
username: shutdown user id:6
username: halt user id:7
username: mail user id:8
username: nobody user id:99
username: sshd user id:74
username: apache user id:48
username: webalizer user id:67
username: ldap user id:55
username: mysql user id:27
username: pdw user id:500
%

By default AWK associates a blank space as a delimiter for the incoming data; to change this association
the -F switch is used to denote a different field separator — the colon, for example, is the field separator
in the /etc/passwd file. So the quotation marks around the colon, directly following the -F switch
denote the delimiter that is in use.

This example also uses a print command to provide a structure to the output:

print “username: “ $1 “\t\t\t user id:” $3

174

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 174

All the text to be printed as noted is wrapped in double quotation marks. The $1 and $3 are variables
that contain the data AWK is filtering. AWK initializes a set of variables every time it process a file; $1 is
the variable that contains the text up to the first delimiter; $2 is the second field, and so on, so this com-
mand calls for the contents of the first ($1) and third ($3) fields. Variable $0 would be the whole line.

The AWK editing command consists of two parts: patterns and commands. Patterns are matched with
the line from the data file. If no pattern is provided, AWK matches any line and the command is always
executed. The preceding example has no pattern to match before determining whether the command is
to be executed, so AWK executes the command for each and every line.

Working with Patterns
Patterns in AWK work just like patterns in sed; they consist of a string of text or one or more regular
expressions contained within slashes (/). Here are a couple of example patterns:

String example
/text pattern/
Reg Ex example match any lowercase chars
/[a-z]/

The commands that follow the pattern rules provide instructions on what AWK is to do when a pattern
match evaluates as true. Commands may contain several instructions, each separated by a semicolon (;).
Common AWK instructions include =, print, printf, if, while, and for.

These instructions behave like similar instructions in other programming languages, providing the capa-
bility to assign values to variables (=), print output (print and printf), or execute segments of code
given a certain set of conditions (if, while, and for). Conditional statements provide for the capability
to refine pattern matching.

In the preceding example, the first and third fields are printed in between text that identifies the values
for the user reading the output. The statement printf denotes that the output is going to have its own
format and allows for the use of escape sequences such as the \t, which simply denotes spacing of the
output, specifically that the output should be spaced by a tab; the example called for two tabs.

Other commonly used escape sequences include those shown in the following table.

Escape Sequence Function

\f Form feed, new page

\n New line (\012 or \015)

\r Carriage return, overprint

\v Vertical tab

\’ Single quotation mark

\” Double quotation mark

\\ Backslash

Table continued on following page

175

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 175

Escape Sequence Function

\0 Null (character value 000)

\a Alert, bell

\b Backspace

\040 Space

\ddd Octal notation

\xddd Hexadecimal notation

Pattern matching, with either exact strings or regular expressions, is at the heart of both sed and AWK.
So it makes sense that understanding how it works and what power that regular expressions bring to it
are important aspects of maximizing the benefit of tools such as sed, AWK, and even Perl. (Perl is dis-
cussed in Chapter 17.)

Programming with AWK
AWK, unlike sed, is actually a full-fledged, structured, interpreted programming language for pattern
matching. That might sound intimidating, but it isn’t once the basics are understood.

What it does mean is that AWK is a lot more robust when it comes to developing rules for matching pat-
terns of data with regular expressions. Just think of the rules as a series of steps or commands for break-
ing apart the data. As with sed, more then a handful of commands can be placed within a file for better
overall management. In the following “Try It Out,” you place commands from the previous “Try It Out”
example into a file that AWK can then use as a collection of steps for processing data.

Try It Out Use an AWK File
1. Use vi to enter the following and save the file as print.awk:

BEGIN {
FS=”:”

}
{ printf “username: “ $1 “\t\t\t user id: $3 }

2. Execute awk as follows:

% awk -f print.awk /etc/passwd

The resulting output is just as the previous example:

username: root user id:0
username: bin user id:1
username: sync user id:5
username: shutdown user id:6
username: halt user id:7

176

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 176

username: mail user id:8
username: nobody user id:99
username: sshd user id:74
username: apache user id:48
username: webalizer user id:67
username: ldap user id:55
username: mysql user id:27
username: pdw user id:500
%

How It Works
The script as executed performs the same function as the previous example; the difference here is the
commands reside within a file, with a slightly different format.

Because AWK is a structured programming language, there is a general format to the layout of the file:

1. Beginning commands, which are executed only once at the beginning of the file, are set into a
block starting with the word BEGIN. The block is contained in braces exactly as the example
shows:

BEGIN {
FS=”:”

}

2. Pattern-matching commands are blocks of commands that are executed once for each and every
line in the data file. Here’s an example:

{ printf “username: “ $1 “\t\t\t user id: $3 }

3. Ending commands, a block of commands first denoted by the word END, are executed only once,
when the end of file is reached. While the “Try It Out” example contains no commands with an
END block, a possible END block for this example might look something like this:

END {
Printf “All done processing /etc/passwd”

}

The only code in the example’s BEGIN block is the definition of the delimiter, the colon. This is akin to the
-F switch used at the command line in the previous example. In this example, the delimiter is assigned to
a variable, FS, which AWK will check when executing the main pattern-matching block of code.

FS (field separator) is one of several standard variables that AWK uses. Others include:

❑ NF— Variable for providing a count as to the number of words on a specific line.

❑ NR— Variable for the record being processed. That is, the value in NR is the current line in a file
awk is working on.

❑ FILENAME— Variable for providing the name of the input file.

❑ RS— Variable for denoting what the separator for each line in a file is.

177

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 177

AWK variables are typeless. That is, unlike other programming languages where the content of the vari-
ables has to be predefined — for example, is the variable a numeric value that can be manipulated by the
rules of mathematics or a string of alphanumeric characters that are evaluated by a different set of rules —
AWK allows any value to be entered without first providing a data type. In other words, numbers or char-
acter strings can be assigned to variables and AWK tries to make some sense out of what is present within
the variable.

The main section of the program, the pattern-matching commands for each data line, is executed in
order from the top line down. Lines from the data file are read and evaluated one by one, from the top
of the file down as well.

When the AWK program is reading and evaluating a data file, the commands see only the current single
line from the data file at a time and all AWK program variables. The whole line is subject to pattern
matching and is automatically loaded into special variables such as $0, $1, and so on.

The END block, as with the BEGIN, provides a set of commands that are to be executed only once, when
the end of the incoming data has been reached. The last example did not include an END segment. BEGIN
and END segments are not necessary for all AWK programs. They are helpful, however, in setting up and
cleaning up a working environment from which the bulk of the programming can work within.

The versions of AWK available on some systems do not allow BEGIN or END commands, but set all vari-
ables to zero or space when the execution of the program starts. Make sure you consult the documentation
on your system before attempting anything ambitious.

In any case, the point for BEGIN and END segments is that AWK is a stateless programming environment.
That is, AWK treats each new input line in a similar way. Beginning and ending blocks as well as vari-
ables and conditional instructions enable the programmer to create a set of states that allows some lines
of data to be treated in different ways than other lines of data. This is important because most real tasks
need a set of states to filter data in a useful manner.

Summary
The editor sed and programming language AWK enable you to perform powerful text manipulation and
editing tasks at the command line. You can use them separately or together to manage the contents of
multiple Unix file types. Sed and AWK offer a variety of features, including the capability to:

❑ Use output from one program as input for text manipulation functions

❑ Sort and extract information from a lengthy file, displaying only the desired data

❑ Use sophisticated pattern-matching functions

❑ Globally replace multiple pattern strings with a single command

178

Chapter 9

12_579940 ch09.qxd 3/21/05 6:12 PM Page 178

Exercises
Create the following file to use for these exercises. Name it addresses.txt:

Roger Longtwig:35 Midvale Ave.:Austin, TX:35432
Brad Brookstone:1044 E. 32nd St.:NY, New York:10001
Richard Smack:845 Pleasant Ter.:Dauberville, CT:06239
Django Steinbart:10 E. Point Way:Atlanta, GA:30374
Cliff Claymore:111 S. Main St.:Clevenger, IA:55472

1. Create a command that will sort these by ZIP code into a file called addresses-sorted.txt.

2. Create a sed script that will replace any street abbreviation (such as St. or Ave.) or cardinal
abbreviation (N., S., E., W.) with the full word.

3. Create a command that will reverse the “NY, New York” in the second line to “New York, NY”.

179

Advanced Unix Commands: Sed and AWK

12_579940 ch09.qxd 3/21/05 6:12 PM Page 179

12_579940 ch09.qxd 3/21/05 6:12 PM Page 180

10
Job Control and Process

Management

This chapter covers starting and stopping processes, sending signals to running programs, view-
ing information on running processes, shell job control, and more. These essential functions enable
the Unix user to manage multiple processes from the command prompt, as well as to understand the
ongoing functions of a multiuser operating system. You’ll learn how to identify and control system
and user processes with basic Unix tools.

What Is a Process?
A process, in simple terms, is an instance of a running program.

As covered in Chapter 2, the parent of all processes, init, is started when the operating system
boots. Historically, it is process ID number 1. As other programs are started, each is assigned a
unique process identifier, known as a PID.

Behind the scenes, a fork library call or an execve system call is used to start the new program.
A fork is produced when the current running program is copied to make a child, an exact copy of
the running program. The forked program has a new PID and a different parent process ID (of
course), and the child’s resource utilizations are all reset. For example, by default, the forked child
and its parent share file descriptors and can share open files.

In contrast to forking a process, you can replace the current running process with a new process.
The Unix shell includes a built-in command called exec that replaces the running shell with a new
program. (Behind the scenes, this uses the execve system call.) For example, typing exec date
will run the date program, and the original shell will be closed.

Normally, process IDs are assigned in a sequential order. As processes stop, the previously
unavailable PIDs can be used again. Usually, PIDs are in the 1 to 32768 range. Some systems
have 64-bit PIDs and a larger range. On a sample NetBSD workstation that has been up for 50
days, you might see 117 processes with PIDs ranging from 0 through 27152.

13_579940 ch10.qxd 3/21/05 6:09 PM Page 181

Some systems assign a pseudo-random process ID in an attempt to stop malicious programs from guessing
PIDs to exploit temporary file race conditions. (A race condition is when different programs attempt to do
something before the other; for example, a malicious program may attempt to create a symlink using a
guessed filename to an important file before another program uses the filename.) Nevertheless, if the secu-
rity issue exists, randomness probably doesn’t matter since many process IDs can be guessed anyway.

To see the PID assigned to your shell, look at the $ shell variable. For example:

% echo $$
23527

This output, 23527, is the process ID of the running command line shell.

Starting a process is as simple as typing a command at the Unix shell prompt or starting a program from
a menu. The software contains executable code for your platform. The file system attributes indicate
whether the file is an executable and who has permission to execute it (the owner of the file, the members
of group that owns the file, or everyone). You can use the ls long listing (ls -l) to see these file modes.

The file command, found on most Unix systems, can also tell you if a file is an executable. For example,
on a NetBSD 1.6.x system, you might issue this command:

$ file /bin/ls
/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for NetBSD,
statically linked, stripped

On a Mac OS X box, file shows:

$ file /bin/ls
in/ls: Mach-O executable ppc

On a Linux system, you might see:

$ file /bin/ls
/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.0.0, dynamically linked (uses shared libs), stripped

Give the file command a try by running it with the filenames of all types of Unix files as the arguments
and see what it tells you. You should see brief descriptions of the file types.

Shell Scripts
You can also have executable files that can be executed as they are written, rather than being written in
programming code. When such a program is loaded, the first characters of the file indicate what type of
executable format it is. The magic characters #! (often called a sh-bang) tell the kernel to run the program
listed after the #!, including setting command-line arguments as required. The file then becomes the
input to be used by the now-running interpreter.

182

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 182

Try It Out Making a Simple Shell Script
Use that well-known example of a shell script, “Hello World,” to explore the concept of making a simple
shell script.

1. Open a text editor.

2. Enter these two lines into an empty file:

#!/bin/cat
Hello World

3. Save the file as cat.script and exit the editor.

4. Make the file executable with this command:

chmod a+x cat.script

5. Run the file:

./cat.script

You can also use the full path to the command to run it. The output will simply be the file itself,
because cat displays it.

How It Works
As you can tell from this simple example, the sh-bang program doesn’t even have to be a real program-
ming language interpreter, but in most cases, it is used by /bin/sh and for Perl scripts. Many examples
of shell scripting are covered throughout this book. For more details on getting started with shell script-
ing, see Chapter 13.

What Processes Are Running?
It is easy to see your own processes by running the ps (process status) command. Issued without any
arguments, ps displays your own processes that are associated with a terminal. The ps tool is very use-
ful for quickly seeing what processes you and others on your same system have running. It also can be
used to see which processes are using up your memory or overworking your CPU.

For example, on a Linux 2.6.x system, you might get this output:

$ ps
PID TTY TIME CMD

18358 ttyp3 00:00:00 sh
18361 ttyp3 00:01:31 abiword
18789 ttyp3 00:00:00 ps

The following is from a NetBSD 1.6.x system:

$ ps
PID TT STAT TIME COMMAND
2205 p1 IWs+ 0:00.00 bash

183

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 183

17404 p2 Ss+ 1:59.69 ssh -l reed montecristo
26297 p3 Ss 0:00.04 bash
26316 p3 R+ 0:00.00 ps

This example is from a Mac OS X 10.3 box:

$ ps
PID TT STAT TIME COMMAND

29578 std Ss 0:00.03 -bash
29585 std S 0:00.00 sleep 1000

Notice in these default examples that ps displays the process ID, the terminal that process is attached to
(like ttyp3 or p2), the accumulated user plus system time for the process, and the command (and some
arguments) for that process.

The NetBSD example also shows the run state for those processes (in the STAT column). The running
state of the process is identified by the first letter. The following table shows some of the common states.

State Function

I Idle, sleeping for more 20 seconds

D Waiting for disk or other uninterruptible wait

R Runnable, active use

S Sleeping for less than 20 seconds

T Stopped or traced process

Z Zombie process; a dead or defunct process

Depending on the Unix system and the type of ps command installed, you may have different or addi-
tional state identifiers. Be sure to read the ps(1) man page for details.

In the preceding ps output examples, the W state means the process is swapped out. The small s state
means it is a session leader. The plus sign (+) means that that process has use of that terminal.

ps Syntax
The ps command is one of a few commonly used Unix tools that have different syntax and different output
format on different Unix flavors. The two common ps tool formats are the BSD (or Berkeley) ps implemen-
tation, as available on *BSD and Mac OS X systems, and the Unix System V implementation, like that
found on Solaris systems. Most Linux systems provide a ps tool that accepts both ps tool formats. In fact,
the ps tool provided with the procps suite for Linux systems conforms to the Single Unix Specification
version 2 and also mimics ps for IBM S/390, AIX, Digital Unix, HP-UX, IRIX, SCO, SunOS, and Unix98.

The main difference in the ps syntax is the usage of the dash character to prefix options. The standard
BSD ps options do not use a dash with the ps command line options. For example, to output the process
status of your current shell using a BSD-style ps, issue the command:

ps $$

184

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 184

To do the same with a System V style ps, use:

ps -p $$

Give it a try to figure out what syntax your ps uses. (Perhaps it supports both.)

Process States
In the Linux ps example shown earlier, the output did not show information about process states. To
have ps output this extra information, using the BSD ps syntax, you can use the u argument:

$ ps u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
reed 18358 0.0 0.7 2460 668 ttyp3 S Sep13 0:00 -sh
reed 18361 0.0 11.6 32936 10756 ttyp3 S Sep13 6:12 abiword
reed 19736 0.0 0.8 2508 784 ttyp3 R 18:12 0:00 ps u

As you can see, it reports the user running the process, the process ID, the percentage of the CPU the
process has been using over the past minute, the percentage of the real memory, the virtual memory size
in kilobytes, the physical memory used, the terminal it is connected to, the states, when the process was
started, the amount of CPU time used by process (since it was started), and the command name.

Similar information can be shown using the System V ps style with the -l switch. The following exam-
ple is on a Solaris system:

$ ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
8 S 511 366 360 0 50 20 ? 332 ? pts/2 0:01 bash
8 S 511 360 358 0 40 20 ? 136 ? pts/2 0:00 sh
8 O 511 11820 366 0 50 20 ? 138 pts/2 0:00 ps

The first field (F) is no longer used and is included for only historical purposes. The second field (S) is
the state.

It is important to note that the command name could be modified. Some processes change their reported
command name to show status information about the running process. For example, a POP3 server may
use the command name field to show what it is currently doing. The initial command name may show
the actual filename of the POP3 daemon software, and the changed name may indicate who is currently
retrieving e-mails.

System Processes
By default, your system should have several processes running (or in other run states). For example, an
ordinary workstation might have 76 processes, and 53 processes running. This is easy to see by issuing
the command ps ax | wc -l and then subtracting one for the line that contains the ps header.

The a argument for ps causes it to report information about processes for all users. The x argument
tells ps to display information about processes without a controlling terminal.

185

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 185

System processes are programs running behind the scenes handling many essential maintenance aspects
for your system. Normally, system processes do not have a TTY (teletype) in use. Many of these pro-
cesses are often called daemons, and they do routine work. The following is an example of system pro-
cesses running on a Linux system:

$ ps ax
PID TTY STAT TIME COMMAND

1 ? S 0:00 init [3]
2 ? SW 0:00 [migration/0]
3 ? SWN 0:00 [ksoftirqd/0]
4 ? SW< 0:00 [events/0]
5 ? SW< 0:00 [khelper]
6 ? SW< 0:00 [kacpid]

20 ? SW< 0:00 [kblockd/0]
21 ? SW 0:00 [khubd]
31 ? SW 0:00 [pdflush]
32 ? SW 0:00 [pdflush]
33 ? SW 0:13 [kswapd0]
34 ? SW< 0:00 [aio/0]

618 ? SW 0:00 [kseriod]
646 ? SW< 0:00 [ata/0]
647 ? SW 0:00 [khpsbpkt]
670 ? SW 0:00 [kjournald]
788 ? SW 0:00 [kjournald]
793 ? S 0:00 /usr/sbin/syslogd
797 ? S 0:00 /usr/sbin/klogd
816 ? S 0:00 /usr/sbin/sshd
829 tty1 S 0:00 /sbin/agetty 38400 tty1
830 tty2 S 0:00 /sbin/agetty 38400 tty2
831 tty3 S 0:00 /sbin/agetty 38400 tty3

The following is a list of system processes running on a Solaris system. It uses the -e switch to output
information on every process:

$ ps -e
PID TTY TIME CMD

0 ? 0:02 sched
1 ? 0:18 init
2 ? 0:00 pageout
3 ? 8:06 fsflush

314 ? 0:00 sac
224 ? 0:00 utmpd
315 console 0:00 ttymon
47 ? 0:00 sysevent
54 ? 0:00 picld

130 ? 0:00 rpcbind
191 ? 0:00 syslogd
179 ? 0:00 automoun
153 ? 0:00 inetd
205 ? 0:00 nscd
213 ? 0:00 powerd
166 ? 0:00 statd
203 ? 0:00 cron
169 ? 0:00 lockd

186

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 186

318 ? 0:00 Xsun
317 ? 0:00 ttymon
307 ? 0:02 vold
257 ? 0:00 sendmail
245 ? 0:00 afbdaemo
237 ? 0:00 smcboot
238 ? 0:00 smcboot
239 ? 0:00 smcboot
258 ? 0:00 sendmail
319 ? 0:01 mibiisa
290 ? 0:00 snmpdx
295 ? 0:00 dtlogin
299 ? 0:00 dmispd
322 ? 0:00 dtlogin
302 ? 0:00 snmpXdmi
320 ? 0:00 sshd
323 ?? 0:00 fbconsol
335 ? 0:00 dtgreet

This last example shows the system processes on a Mac OS X box:

$ ps ax
PID TT STAT TIME COMMAND

1 ?? Ss 0:00.02 /sbin/init
2 ?? Ss 1:48.08 /sbin/mach_init

78 ?? Ss 0:01.30 /usr/sbin/syslogd -s -m 0
84 ?? Ss 0:02.28 kextd

106 ?? Ss 0:00.58 /usr/sbin/configd
107 ?? Ss 0:00.14 /usr/sbin/diskarbitrationd
112 ?? Ss 0:02.74 /usr/sbin/notifyd
128 ?? Ss 0:00.01 portmap
142 ?? Ss 0:04.01 netinfod -s local
144 ?? Ss 2:56.96 update
147 ?? Ss 0:00.00 dynamic_pager -F /private/var/vm/swapfile
171 ?? Ss 0:00.00 /usr/sbin/KernelEventAgent
172 ?? Ss 0:00.40 /usr/sbin/mDNSResponder
176 ?? Ss 0:00.68 /System/Library/CoreServices/coreservicesd
177 ?? Ss 0:00.14 /usr/sbin/distnoted
187 ?? Ss 0:00.88 cron
192 ?? Ss 0:01.21 /System/Library/CoreServices/SecurityServer -X
199 ?? S 0:00.00 /usr/libexec/ioupsd
200 ?? Ss 1:37.85 /System/Library/Frameworks/ApplicationServices.framew
203 ?? Ss 0:00.63 /System/Library/Frameworks/ApplicationServices.framew
210 ?? Ss 0:04.15 /usr/sbin/DirectoryService
228 ?? Ss 0:17.88 /usr/sbin/lookupd
254 ?? Ss 0:00.02 /usr/libexec/crashreporterd
279 ?? Ss 0:00.01 nfsiod -n 4
287 ?? Ss 0:00.02 rpc.statd
291 ?? Ss 0:00.00 rpc.lockd
306 ?? Ss 0:12.81 /usr/sbin/cupsd
310 ?? S 0:00.00 rpc.lockd
319 ?? Ss 0:00.05 xinetd -inetd_compat -pidfile /var/run/xinetd.pid
328 ?? Ss 0:01.30 slpd -f /etc/slpsa.conf
334 ?? Ss 0:00.03 mountd
337 ?? Ss 0:00.00 nfsd-master

187

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 187

338 ?? S 0:11.83 nfsd-server
345 ?? Ss 0:22.02 /usr/sbin/automount -f -m /Network -nsl
348 ?? Ss 0:00.01 /usr/sbin/automount -f -m /automount/Servers -fstab -
355 ?? Ss 0:00.00 /usr/sbin/postfix-watch

4560 ?? Ss 0:00.65 /System/Library/CoreServices/loginwindow.app/Contents
4561 ?? S 0:00.53 /System/Library/Frameworks/ApplicationServices.framew
4565 ?? Ss 0:00.17 /System/Library/CoreServices/pbs
4570 ?? S 0:00.86 /System/Library/CoreServices/Dock.app/Contents/MacOS/
4571 ?? S 0:09.84 /System/Library/CoreServices/SystemUIServer.app/Conte
4572 ?? S 0:03.95 /System/Library/CoreServices/Finder.app/Contents/MacO
4581 ?? S 0:07.51 /Applications/Utilities/NetInfo Manager.app/Contents/
4612 ?? Ss 0:00.18 /System/Library/CoreServices/loginwindow.app/Contents
4614 ?? S 5:29.32 /System/Library/CoreServices/SecurityAgent.app/Conten
4615 ?? S 0:00.18 /System/Library/Frameworks/ApplicationServices.framew

15147 ?? Ss 0:00.27 /usr/sbin/sshd –I

In the preceding examples, a terminal (TTY) is not associated with most of the system processes. This is
noted by a question mark in the TTY field. Also note that the output may be truncated to fit the console
width. Using the BSD ps, you can add two ww options for extra-wide output.

Process Attributes
Each process has an environment with various attributes such as command-line arguments, user envi-
ronment variables, file descriptors, working directory, file creation mask, controlling terminal (console),
resource limitations, and a lot more. Many of the attributes are shared with the parent process.

The kernel also knows about, and can report, numerous other process attributes. On a NetBSD box, the
kernel keeps track of around 85 different attributes for each process. Some examples include reporting
the process ID of its parent, the real and effective user and group IDs, the time the process was invoked,
and resource utilization, such as memory usage and total time spent executing the program. A real user
or group ID is generally the user and group that initially started the program. The effective user or
group ID is when a process is running with different (such as enhanced) permissions. (You can read
more about this later in this chapter in the “SETUID and SETGID” section.)

To view the various process attributes, you can use the ps -o switch, which is available for both styles
of ps. It is used for defining the output format. For example, to output the process IDs, parent PIDs, and
the size of the processes in virtual memory of your own running processes, issue the command:

ps -o user,pid,ppid,vsz,comm

The following are commonly used output format fields:

Field Definition

user Effective user ID of the process

pid Process ID

ppid Process ID of the parent

188

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 188

Field Definition

pcpu Percentage of CPU time used

rss Real memory size in kilobytes

pmem Percentage of rss to physical memory

vsz Kilobytes of the process in virtual memory

tty Controlling terminal name

state (or s) Process state

stime Time started

time Accumulated user and system CPU time

command (or comm) Command name

Be sure to review your ps(1) manual to see what output formats are available.

Stopping Processes
Ending a process can be done in several different ways. Often, from a console-based command, sending
a CTRL + C keystroke (the default interrupt character) will exit the command. But sometimes the inter-
rupt character may be trapped or ignored.

The standard tool for killing a process is kill. Technically, the kill command does not kill a command,
but sends a special signal to the process. Signals are used for simple communication between processes.
Programmers frequently write their software to handle signals in different ways, such as to tell the soft-
ware to reload its configuration, reopen log files, or enable debugging output. Some signals may be used
to tell the software that a network connection is closed, an illegal or problematic memory access was
attempted, there are hardware errors, or some other event has occurred. Over 30 signals are available.

If your system has developer manual pages, you can learn more about signal programming under the C
language by reading the signal(3) and sigaction(2) man pages.

The default signal for the kill command is SIGTERM (for terminate). It is possible that the software
you’re trying to stop is written to cleanly back up files or close down its work when it receives this
TERM signal, but don’t count on it.

To use the kill command, just place the process ID of the process to signal as the command line argu-
ment. For example, to send the default SIGTERM signal to the process ID 5432, run the command:

kill 5432

Be very careful with the kill command. Use the correct PID or you may accidentally close or signal
the wrong program, which may make your system unstable or unusable.

189

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 189

You can also choose the signal by name by prefixing the signal name with a dash, such as:

kill -SIGTERM 5432

The SIG part of the signal name is optional.

To list the possible signal names, run kill with the -l switch:

$ kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE KILL BUS
SEGV SYS PIPE ALRM TERM USR1 USR2 CLD PWR WINCH
URG POLL STOP TSTP CONT TTIN TTOU VTALRM PROF XCPU
XFSZ WAITING LWP FREEZE THAW CANCEL LOST XRES RTMIN RTMIN+1
RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2 RTMAX-1 RTMAX

With some shells, the kill command is already built-in. To use the independent kill tool instead of the
built-in kill, you can run it with the full path name, as in /bin/kill (or /usr/bin/kill depending
on your system).

Signals can also be identified by a signal number. The bash shell’s built-in kill command lists the sig-
nals with their signal numbers, for example:

$ kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGEMT 8) SIGFPE
9) SIGKILL 10) SIGBUS 11) SIGSEGV 12) SIGSYS

13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGURG
17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGINFO 30) SIGUSR1 31) SIGUSR2 32) SIGPWR

If you attempt to kill a process and it does not die, you can try using the unignorable SIGKILL signal.
This signal can’t be handled by individual programs. As mentioned earlier, programs may be written to
exit cleanly, so don’t use kill -9 as your first choice or you may close the program with files or tasks in
an inconsistent state.

The kill command doesn’t use command names as arguments. Although this may seem like an inconve-
nience, it does make sense — you would not want to kill the wrong program if you have several processes
running with the same command name. The normal way to find the PID of the command you want to kill
is with the ps command. The ps output can be piped through grep to list only matching processes. For
example, to find the process ID of the FireFox Web browser, you might issue this command:

$ ps auxww | grep firefox
reed 29591 0.0 16.2 40904 21224 ?? SNs 20Nov04 314:57.03
/usr/pkg/lib/firefox-gtk2/firefox-bin /home/reed/lynx_bookmarks.html
reed 14929 0.0 0.4 100 480 pj DN+ 3:23PM 0:00.01 grep firefox

The grep output also shows the grep line itself. You could kill that FireFox process with the command
kill 29591.

If using a System V ps tool, use the ps -ef or -el switches.

190

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 190

Many Unix systems provide tools called pgrep, pkill, and killall that can be used with command
names instead of using PIDs. On Solaris and System V systems, killall means “kill all.” It is used by
shutdown to terminate all active processes. On other systems, killall is used to send signals to processes
by name. Be careful when using killall. On Linux systems, this dangerous tool is called killall5.

A safer tool is pkill. The pkill command is used like the kill command but instead of using the PID
as the argument to the signal, the command name is used. To kill the FireFox browser, for example, you
could run:

pkill firefox

The argument to pkill is a simple regular expression for matching. Also, the pgrep tool can be used to
simply list the process IDs as pkill would see them, without sending any signal. (The pkill tool
defaults to sending the SIGTERM signal.)

The pkill command can be dangerous because it may match more than you expect. Use the pgrep com-
mand to test first. Be sure to read your system’s pgrep (and pkill) man pagse to see its specific options.

Some systems have a pidof command that is similar to pgrep but doesn’t do a substring match.

The Process Tree
A process tree displays the lineage of your different processes, placing a child process with its parent.
Note that only one parent process exists per child process but that each parent can have multiple chil-
dren. For example, here is a sample Linux process tree:

$ pstree
init-+-3*[agetty]

|-events/0-+-aio/0
| |-ata/0
| |-kacpid
| |-kblockd/0
| |-khelper
| `-2*[pdflush]
|-gconfd-2
|-kdeinit-+-artsd
| |-firefox-bin---firefox-bin---3*[firefox-bin]
| |-3*[kdeinit]
| `-kdeinit---sh---ssh
|-8*[kdeinit]
|-khpsbpkt
|-khubd
|-2*[kjournald]
|-klogd
|-kseriod
|-ksoftirqd/0
|-kswapd0
|-migration/0
|-sshd---sshd---sshd---sh---pstree
|-syslogd
`-xdm-+-X

`-xdm---startkde---kwrapper

191

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 191

The example clearly shows that init is the parent of all processes. Also interesting in the output is the
pstree child, because it shows the parent and grandparents.

A nice process tree program can be written with AWK and shell scripts, or with Perl scripting. A simple
pstree command is available at www.serice.net/pstree/. Another pstree implementation is
available in the psmisc suite from http://psmisc.sourceforge.net/. Also, the ps command
from the procps suite provides a --forest switch that outputs a nice ASCII reproduction of the
process tree.

Zombie Processes
Normally, when a child process is killed, the parent process is told via a SIGCHLD signal. Then the par-
ent can do some other task or restart a new child as needed. However, sometimes the parent process is
killed. In this case, the “parent of all processes,” init, becomes the new PPID (parent process ID). You
can often see this indicated by a process ID of 1 as the PPID of some other process.

When a process is killed, a ps listing may still show the process with a Z state. This is a zombie, or defunct,
process. The process is dead and not being used. In most cases, in a few moments it will actually be gone
and your ps output won’t show it. In some rare cases, like with old Unix kernels combined with buggy
software, you may find that some processes just won’t die even if you send a -SIGKILL signal to them.

If a process is hung, first try sending it a couple of -SIGTERM signals. If you wait and then verify that
the process has not yet quit, try sending a -SIGKILL signal. If you find that the process stubbornly
refuses to die, you may need to reboot your system.

The top Command
The top command is a very useful tool for quickly showing processes sorted by various criteria. It is an
interactive diagnostic tool that updates frequently and shows information about physical and virtual
memory, CPU usage, load averages, and your busy processes. The top command is usually found on
*BSD, Linux, and Mac OS X systems. It can also be downloaded at www.groupsys.com/topinfo/ in
versions suitable for various other Unix systems.

Here’s an example of top running under a Solaris system:

load averages: 0.19, 0.24, 0.12; up 3+19:01:58 06:14:02
37 processes: 36 sleeping, 1 on cpu
CPU states: 99.7% idle, 0.0% user, 0.2% kernel, 0.0% iowait, 0.0% swap
Memory: 512M real, 381M free, 26M swap in use, 859M swap free

PID USERNAME LWP PRI NICE SIZE RES STATE TIME CPU COMMAND
1 root 1 59 0 1232K 368K sleep 0:17 0.00% init

358 root 1 59 0 4520K 2696K sleep 0:13 0.00% sshd
307 root 2 59 0 2648K 2000K sleep 0:01 0.00% vold
366 jreed 1 59 0 2672K 1984K sleep 0:01 0.00% bash

16492 jreed 1 59 0 1760K 1184K cpu 0:00 0.00% top
318 root 1 59 0 122M 11M sleep 0:00 0.00% Xsun
335 root 1 59 0 7912K 4864K sleep 0:00 0.00% dtgreet

192

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 192

322 root 1 59 0 6488K 2832K sleep 0:00 0.00% dtlogin
205 root 18 59 0 3264K 2528K sleep 0:00 0.00% nscd
302 root 2 59 0 3560K 2368K sleep 0:00 0.00% snmpXdmid
295 root 1 59 0 5008K 2048K sleep 0:00 0.00% dtlogin
179 root 3 59 0 3728K 1992K sleep 0:00 0.00% automountd
319 root 7 59 0 2400K 1960K sleep 0:00 0.00% mibiisa
299 root 2 59 0 3144K 1936K sleep 0:00 0.00% dmispd
257 root 1 59 0 4424K 1864K sleep 0:00 0.00% sendmail

Some older versions of Solaris and SunOS do not provide the top command. It can be downloaded from
a third party, such as www.sunfreeware.com, or installed from source.

The following output shows top running on a Mac OS X box:

Processes: 60 total, 2 running, 58 sleeping... 126 threads 06:14:04
Load Avg: 0.00, 0.00, 0.00 CPU usage: 0.0% user, 4.2% sys, 95.8% idle
SharedLibs: num = 115, resident = 34.0M code, 3.52M data, 9.45M LinkEdit
MemRegions: num = 3065, resident = 23.8M + 7.87M private, 52.0M shared
PhysMem: 106M wired, 93.8M active, 106M inactive, 306M used, 1.20G free
VM: 3.52G + 80.7M 256370(0) pageins, 0(0) pageouts

PID COMMAND %CPU TIME #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE
17705 gconfd-2 0.0% 0:00.91 1 13 47 792K 1.95M 2.75M 28.3M
17700 bash 0.0% 0:00.61 1 13 18 228K 964K 664K 18.2M
17699 sshd 0.0% 0:01.90 1 9 42 256K 1.69M 636K 30.2M
17697 sshd 0.0% 0:00.35 1 15 39 100K 1.69M 1.41M 30.0M
15361 bash 0.0% 0:00.33 1 12 17 192K 948K 844K 18.2M
15358 sshd 0.0% 0:01.02 1 9 39 112K 1.69M 468K 30.0M
15147 sshd 0.0% 0:00.27 1 15 39 100K 1.69M 1.41M 30.0M
9960 top 7.3% 0:00.36 1 17 26 268K 492K 648K 27.1M
4615 ATSServer 0.0% 0:00.18 2 44 50 392K 4.03M 1.81M 60.3M
4614 SecurityAg 0.0% 5:29.32 1 62 88 1.29M 13.8M 10.7M 144M
4612 loginwindo 0.0% 0:00.18 3 110 90 1008K 2.97M 3.05M 127M
4581 NetInfo Ma 0.0% 0:07.51 2 78 103 1.86M 8.79M 15.8M 154M
4572 Finder 0.0% 0:03.95 1 99 123 3.46M 16.9M 21.8M 169M
4571 SystemUISe 0.0% 0:10.05 1 169 113 1.80M 8.38M 17.0M 154M
4570 Dock 0.0% 0:00.86 2 76 100 612K 8.95M 10.6M 143M
4565 pbs 0.0% 0:00.17 2 47 39 516K 1.36M 4.28M 43.8M

Different implementations of top provide different information and have different keystrokes for inter-
active behavior. Generally, the top command shows the process with the most CPU activity at the top of
the list. This is customizable.

View the manual page for your top command or, if your top supports it, press the question mark (?)
while running top for help. Press the Q key to quit top.

The previous examples of top output show the load average over 1, 5, and 15 minutes. You can also run
the uptime or w commands to display the load averages:

netbsd3$ uptime
4:21AM up 139 days, 17:11, 5 users, load averages: 0.22, 0.22, 0.24

193

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 193

The load average shows the average number of jobs in the run queue for the past minute, 5 minutes, and
15 minutes. It is an indicator of active processes. This information can be used to quickly determine
whether your system is busy.

The load average information is specific to your operating system release and your hardware. You can-
not accurately compare load averages from different systems to evaluate performance. For example, a
NetBSD system running on an Alpha hardware architecture with a load average of 10 may feel and
behave faster than a Linux system on a standard x86 architecture with a load average of 3.

It is very common to see a load average of 0.00 or near zero even on a moderately used system.

The /proc File System
The /proc file system is a dynamically generated file system that can be used to retrieve information
about processes running on your system. Depending on the Unix system, the /proc file system can also
be used to retrieve and set other kernel-level configurations. Linux and Solaris systems provide /proc
file systems. /proc file systems are also available for other Unix systems but are usually not mounted
by default.

The /proc file system contains a directory entry for active processes named after the PID. These directories
contain files that provide various attributes about the process. For example, the following is the directory
listing of a /proc file system for a personal shell process on a Solaris box:

$ ls -l /proc/$$
total 5402
-rw------- 1 jreed build 2736128 Dec 16 12:06 as
-r-------- 1 jreed build 152 Dec 16 12:06 auxv
-r-------- 1 jreed build 32 Dec 16 12:06 cred
--w------- 1 jreed build 0 Dec 16 12:06 ctl
lr-x------ 1 jreed build 0 Dec 16 12:06 cwd ->
dr-x------ 2 jreed build 8208 Dec 16 12:06 fd
-r--r--r-- 1 jreed build 120 Dec 16 12:06 lpsinfo
-r-------- 1 jreed build 912 Dec 16 12:06 lstatus
-r--r--r-- 1 jreed build 536 Dec 16 12:06 lusage
dr-xr-xr-x 3 jreed build 48 Dec 16 12:06 lwp
-r-------- 1 jreed build 2112 Dec 16 12:06 map
dr-x------ 2 jreed build 544 Dec 16 12:06 object
-r-------- 1 jreed build 2568 Dec 16 12:06 pagedata
-r--r--r-- 1 jreed build 336 Dec 16 12:06 psinfo
-r-------- 1 jreed build 2112 Dec 16 12:06 rmap
lr-x------ 1 jreed build 0 Dec 16 12:06 root ->
-r-------- 1 jreed build 1472 Dec 16 12:06 sigact
-r-------- 1 jreed build 1232 Dec 16 12:06 status
-r--r--r-- 1 jreed build 256 Dec 16 12:06 usage
-r-------- 1 jreed build 0 Dec 16 12:06 watch
-r-------- 1 jreed build 3344 Dec 16 12:06 xmap

194

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 194

Here is the /proc entry for init on a Linux box:

$ sudo ls -l /proc/1
total 0
-r-------- 1 root root 0 Dec 20 04:41 auxv
-r--r--r-- 1 root root 0 Dec 20 02:11 cmdline
lrwxrwxrwx 1 root root 0 Dec 20 04:41 cwd -> /
-r-------- 1 root root 0 Dec 20 04:41 environ
lrwxrwxrwx 1 root root 0 Dec 20 04:00 exe -> /sbin/init
dr-x------ 2 root root 0 Dec 20 04:41 fd
-r--r--r-- 1 root root 0 Dec 20 04:41 maps
-rw------- 1 root root 0 Dec 20 04:41 mem
-r--r--r-- 1 root root 0 Dec 20 04:41 mounts
lrwxrwxrwx 1 root root 0 Dec 20 04:41 root -> /
-r--r--r-- 1 root root 0 Dec 20 02:11 stat
-r--r--r-- 1 root root 0 Dec 20 04:41 statm
-r--r--r-- 1 root root 0 Dec 20 02:11 status
dr-xr-xr-x 3 root root 0 Dec 20 04:41 task
-r--r--r-- 1 root root 0 Dec 20 04:41 wchan

The /proc file system can be used to see what file descriptors are in use by processes, what the com-
mand name is, what executable is actually running, what environment variables are defined, and more.

SETUID and SETGID
Programs can run with enhanced capabilities when the files have set-user-ID-on-execution or set-group-
ID-on-execution modes set. If a program is owned by the root user and the set-user-ID mode bit is set, it
will have enhanced (root) privilege when it’s run by a regular user. For example, look at these setuid or
setgid tools on a Mac OS X box:

-r-xr-sr-x 1 root operator 23336 23 Sep 2003 /bin/df
-r-sr-xr-x 3 root wheel 41480 25 Sep 2003 /usr/bin/chsh
-r-sr-xr-x 1 root wheel 37704 23 Sep 2003 /usr/bin/crontab
-r-xr-sr-x 1 root kmem 24320 23 Sep 2003 /usr/bin/fstat
-r-sr-xr-x 1 root wheel 39992 25 Sep 2003 /usr/bin/passwd
-rwxr-sr-x 1 root postdrop 140556 25 Sep 2003 /usr/sbin/postqueue

This output is in normal ls long-listing format (such as ls -l). The user and group execute bits shown
with a small letter s indicate they are setuid or setgid, respectively.

This output shows there are a number of useful administrative tools that operate under the SETUID and
SETGID umbrellas:

❑ The setgid df command runs as the operator group so it can look at disk devices that are not
readable by everyone but are readable by members of the operator group.

❑ The setuid chsh and passwd tools run as the root user, so a regular user can update the user
database. This software is written so that the users can modify only their own entries.

195

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 195

❑ The setuid crontab command runs with root privileges, so it can create, edit, or remove the
user’s own crontab from the crontabs directory, usually at /var/cron/tabs/.

❑ The setgid fstat tool runs as the kmem group so it can read from the /dev/kmem device,
which is not readable by the world but is readable by kmem group members. The /dev/kmem
device is used to retrieve various system data structures useful for troubleshooting, debugging,
and performance analysis.

❑ The setgid postqueue tool runs with postdrop group privileges so it can view and manage
Postfix e-mail queue files. (Postfix is a mail transfer agent that is not installed by default on all
Unix systems. See www.postfix.org for more information.

There are many other examples of SETUID and SETGID software used on a daily basis. You can use the
find tool to list this software on your system. Give the following command a try:

sudo find / -perm -4000 –print

This command lists all the files that have the set-user-ID-on-execution bit set.

As you may imagine, SETUID and SETGID software can potentially cause security issues. For example,
software that doesn’t correctly check its input could be abused to run other commands or access other
files with enhanced privileges. SETUID or SETGID software should be carefully written and audited.
Most Unix systems do not allow setuid (or setgid) scripts because of several techniques for taking
advantage of a shell script and its environment. Some systems do offer suidperl, which can be used
for creating setuid Perl scripts. (See Chapter 17 for information on getting started with Perl.)

The main way to utilize setuid and setgid functionality safely is to use fine-grained groups that own
the directories and/or files (including devices) to which a user needs read or write access. For example,
the user databases could be split up into many separate files with some allowing permission for the spe-
cific user to modify.

Shell Job Control
The Unix command-line shell can be used to run programs in the background so you can run multiple
programs at a time. It also can be used to suspend commands and restart suspended commands. To tell
the shell to run a given command in the background, simply append an ampersand to the end of the
command line. For example, to run sleep in the background, issue the command:

$ sleep 60 &
[1] 16556
$

This command runs sleep for 60 seconds. The sleep tool basically waits a set amount of time and then
exits successfully. By using the ampersand, the next command-line shell prompt is displayed and is
usable immediately for running other commands.

The example output is from the BASH shell. The number 1 in brackets is the job number, And the
16556 is the process ID. This is displayed by the shell, not by the sleep command.

196

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 196

Most shells have a built-in jobs command that can be used to show your running shell jobs:

$ jobs
[1]+ Running sleep 60 &

A command running in the background is not waiting for console input, but may possibly be outputting
text to the console. A command running in the foreground can have full interaction.

You can move a job from the background to the foreground by running the built-in fg command. If you
have multiple jobs, you can set the job number as the fg argument, as in:

$ fg 1
sleep 60

Once you bring a command to the foreground, your shell’s prompt does not display until the process is
ended, and you can’t run another command until then.

The shell also enables you to suspend a currently running foreground process by pressing the suspend
keystroke combination Ctrl + Z by default. Using the sleep command is an easy way to practice using
job control. Here’s an example of pressing Ctrl + Z after running sleep:

$ sleep 60
^Z
[1]+ Stopped sleep 60
$ jobs
[1]+ Stopped sleep 60
$ bg %1
[1]+ sleep 60 &
$

The ^Z (Ctrl + Z) keystroke stopped job number one. It can be unsuspended by using fg or the built-in
bg command. In this example, bg was used to run it in the background.

Shell jobs can also be killed (or signals can be sent to shell jobs). Most shells have a built-in kill com-
mand where you use a percent sign to reference a job number instead of a PID. For example, kill %1
would send the terminate signal to the job number one. Be sure to use the percent sign if you’re using
shell jobs, or you may end up sending the signal to the wrong process.

A process can also be suspended by sending signal 18 (SIGTSTP) to it, and then unsuspended by send-
ing signal 19 (SIGCONT):

$ sleep 120 &
[2] 15695
$ kill -18 %2
[2]+ Stopped sleep 120

$ kill -19 %2
$ jobs
[2]+ Running sleep 120 &
netbsd
$

Using kill to suspend and unsuspend processes may be useful when you don’t have a way to press
Ctrl + Z to suspend.

197

Job Control and Process Management

13_579940 ch10.qxd 3/21/05 6:09 PM Page 197

Summary
This chapter covered several simple but essential tools for process management. Processes are simply
loaded programs associated with a unique process ID. Processes are often known as parents and
children — the created process (the newly started program) is called the child.

❑ Process information can be listed with the ps and top tools and by viewing the /proc file sys-
tems (on operating systems that provide /proc).

❑ The ps and top tools can be used for performance reporting and troubleshooting.

❑ Signals are a way to communicate between processes.

❑ The kill command is the standard tool for sending signals to processes; and its default is to
send a termination signal.

❑ Unix shells provide a simple way to run multiple programs in the background simultaneously
by adding an ampersand (&) to the end of the command line.

198

Chapter 10

13_579940 ch10.qxd 3/21/05 6:09 PM Page 198

11
Running Programs at

Specified Times

It is no wonder that the first digital computers were designed to handle repetitive tasks most people
would find difficult or uninteresting. This is what computers excel at. This method of computing,
known as batch computing, is still with us today, and the value of the digital computer, no matter what
operating system, is cut severely if the computer system is solely dependent on an interactive mode,
constant action and reaction from a user or users. This chapter explores some of the fundamental tools
available on a Unix system for running programs at scheduled times—the first step in taking full
advantage of digital computers.

Of course, you can’t run anything at a scheduled time without a clock, so this chapter first explains
how to set a system clock, how it relates to the clock embedded on the hardware, and how to syn-
chronize the clock with other systems on a network.

This chapter also examines common tools such as crontab used to schedule and run programs and
scripts on a Unix system, and provides working examples of how system automation can help save
a user from unnecessary repetition and boredom.

System Clock
Most computer systems actually have two 24-hour clocks: a hardware clock and a system clock.
The battery-powered hardware clock is embedded within the computer hardware. It’s designed to
keep track of time when the system is not turned on. The system clock is its software counterpart,
created when the system initializes. It is set from the hardware clock.

On most Unix systems, the hardware clock is set to keep Universal Time (UTC), also called Greenwich
Mean Time (GMT), instead of the time of day in the system’s actual time zone. The system can be con-
figured to keep track of UTC time and to adjust for the offset between UTC and the local time, including
daylight saving time.

14_579940 ch11.qxd 3/21/05 6:11 PM Page 199

For example, when a Unix-based system such as Linux boots, one of the initialization scripts runs the
program hwclock, which copies the current hardware clock time to the system clock. This is an impor-
tant first step because it is from the system clock (also known as the kernel clock or software clock) that
the Unix system gets the current time and date.

UTC does not change as daylight saving time comes into effect in various time zones (and not all places
participate in daylight saving time).

Most system clocks store and calculate time as the number of seconds since midnight January 1, 1970, UTC,
regardless of whether the hardware clock is set to UTC. To allow the clock to increment 1 second at a time,
Unix simply counts seconds since New Year’s Day 1970. All changes in denoting the time are done by
library functions linked into the system or applications that convert between UTC and local time at runtime.

An advantage to storing time in this fashion is that there was no inherent Y2K problem with Unix-based
systems. The disadvantage is that the Y2K problem has simply been postponed, because the number of
seconds since the January 1, 1970 UTC, known as the Unix epoch, are stored on a signed 32-bit integer
on a 32-bit system and sometime in the year 2038, the number of seconds since the beginning of the Unix
epoch will be larger then a 32-bit integer.

Another advantage is that system tools such as date or applications such as ntpd adjust on-the-fly to the local
time conditions so that the format used to display the current time can be adjusted on a system, application, or
user level. Consider a situation in which a user is accessing the system from a different time zone. If he chooses,
he can set an environment variable, TZ, to adjust all dates and times to appear correctly for his specific time
zone and not the time zone where system is physically located.

The system clock is an important part of the overall system. Without it, a number of programs and func-
tions such as automation would not work. Setting the system clock or hardware clock requires superuser
(root) privileges. In the following examples, the sudo command is used to grant temporary superuser
status to the privileged user for changing the clock settings.

Checking and Setting the System Clock with Date
To check or set the system clock, date is the command-line tool to use. Given no arguments, the command
returns the current date and time:

% date
Sun Oct 31 23:59:00 CST 2004

The command outputs the relevant time zone, too. In this example, it denotes that this specific system
clock is synchronized for central standard time.

To set the current time and date to, say, a minute and half into the New Year, January 1, 2006, 00:01:30, the
date command needs the proper arguments in the format of CCYYMMDDhhmm.ss, where CCYY is
the four-digit year (2006); MMDD is the two-digit month and two-digit day (0101); and hhmm.ss is the
two-digit hour (24-hour notation), two-digit minute, and two-digit second (0001.25):

% sudo date 200601010001.30
Sun Jan 1 00:01:30 CST 2006

200

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 200

Syncing Clocks on Linux with hwclock
There are a number of methods for setting the hardware clock of a given system. One common way is to
configure the clock when setting up other hardware initialization settings in the hardware’s built-in soft-
ware. However, because the software interface varies from hardware platform to hardware platform,
another method is to set the system clock first, and then synchronize (sync) the hardware clock to the
system clock setting.

The hwclock command is for querying and setting the hardware clock. With no arguments, it displays
the current setting:

$ /sbin/hwclock
Tue 30 Nov 2004 02:50:43 PM CST -0.600758 seconds

The hwclock command is not located in the user’s path of executable programs because many systems,
including various Linux distributions, place commands such as hwclock with other programs that are
intended to be used only by root in a directory called /sbin. As noted before, setting the hardware
clock, which is one of the main functions of this command, is intended only for superuser accounts such
as root. Thus, to even query the date the hardware clock is set to, a typical user of a Linux distribution
will need to include the path to the hwclock command as well as the command itself.

To sync the hardware clock with the system clock, the hwclock command requires the switch --systohc:

$ sudo /sbin/hwclock --systohc

If the hardware clock is to be set to UTC, an additional switch, --utc, is needed to complete the command.

Syncing the System Clock with NTP
Another common tool for keeping the clocks in order is syncing the system with an outside system, using
the Network Time Protocol (NTP). As the name implies, this requires a networked system. It looks for the
current time at another trusted system running a NTP server. Moreover, if the system always has a net-
work connection at boot time, the system can skip syncing with the hardware clock all together and use
ntpdate (often included with the ntpd package on Linux systems) to initialize the system clock from a
network-based time server. It doesn’t matter whether the time server is remote or on a local network.

Here’s an example of how to use the tool:

$ sudo ntpdate
10 Dec 19:35:39 ntpdate[3736]: step time server 17.254.0.27 offset -11.081510 sec

The ntpd program is the standard for synchronizing clocks across a network, and it comes with a list of
public time servers to which a system can connect using the NTP. NTP not only provides a method for
transmitting the current time but also takes into account the delay in transition, providing an additional
level of accuracy. Moreover, NTP uses a trust level to determine what server has an authoritative time. The
lower the number, the better the trustworthiness, so a level 1 clock is best because it’s set by an accurate
and trusted time source. Most systems — Apple, Linux, Windows — provide one or two public NTP servers
to which systems can sync if no other local or network server is available. These tend to be level 2 servers.

201

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 201

To synchronize the system clock using NTP, first find one or more NTP servers to use. Check with a net-
work administrator or server provider, who may have set up a local NTP server for this purpose. There
are a number of online lists of publicly accessible NTP servers, such as the listing at http://ntp.isc.
org/bin/view/Servers/WebHome. In worst case, check whether your Unix system provider offers a
public NTP server with which you can connect. Always make sure you understand the usage policy for
any server and ask for permission if required.

On a number of Unix-type systems, NTP is configured in the /etc/ntp.conf file:

server ntp.local.com prefer
server time.apple.com

driftfile /var/db/ntp.drift

The server options specify which servers are to be used; each server is listed on an individual line. If a
server is specified with the prefer argument, as with ntp.local.com, that server is preferred over any
other listed servers. A response from a preferred server is used unless it differs significantly from the
responses of other listed servers.

Additional information can be provided in the ntp.conf file if needed. For example, a driftfile
option specifies a file that stores information about the system clock’s frequency offset. This is used by
ntpd to automatically compensate for the clock’s natural drift, should ntpd be cut off from all external
time sources for a period of time.

Any Unix system can be an NTP server for other systems using ntpd.

Scheduling Commands to Run in the Future
To put the system clock to good use and to automate tasks, all Unix systems provide two key tools —
cron and at— for running commands, applications, and scripts at specified times.

Routine Execution with Cron
The cron program enables Unix users to execute commands, scripts, and applications at specified times
and/or dates. Cron uses a Unix daemon (called crond) that needs to be started only once, usually when
the system boots, and lies dormant until it is required. When is the cron daemon required? The daemon,
called crond, is required when the time comes to run a specified command, script, or application from
one of the config files, or crontabs.

Starting and Using Cron
To start cron from the command line, simply enter the following command:

$ sudo crond
$

The process automatically goes into the background; unlike most applications, cron doesn’t require the
& argument to force it there.

202

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 202

However, on most Unix distributions, crond is automatically installed and will run at startup. Use the
ps (process status) command to check that the daemon is running:

$ ps auwx | grep cron
root 2068 0.0 0.0 2168 656 ? S Nov02 0:00 crond
pdw 24913 0.0 0.0 4596 568 pts/3 R 02:08 0:00 grep cron

Once the cron daemon is up and running, it can be put to extensive use.

Try It Out Schedule Backup of Important Documents
Each user on a Unix system has a home directory that stores all documents, applications, and system
options for personal use. The information in this directory can be valuable and irreplaceable, and many
go to great lengths to keep it safe. An important step in keeping valuable data safe is to keep a backup
copy. Of course, remembering to routinely back up any item can be challenging, even in the best of
times, let alone in the course of any given day with plenty of distractions at work or at home. Sounds
like a perfect use of cron, doesn’t it?

Follow these steps to schedule backup for one of your directories:

1. Take a look at your home directory and determine which documents are important and where they
reside. Depending on personal organization habits, the directory might look something like this:

$ ls
bin Desktop docs downloads Mail tmp
$

2. Of the directories containing information, choose one for this exercise. docs is always a good
one — its contents generally should be backed up — and that’s what is used in the example.

3. Create a new subdirectory within your home directory called backups.

$ mkdir backups
$

4. Open the cron configuration file /etc/crontab in a text editor. (You need superuser privileges
to open and edit the file.)

$ sudo vi /etc/crontab

The contents of the file will look something like this:

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

Adjust the time zone if the CMOS clock keeps local time, as opposed to
UTC time. See adjkerntz(8) for details.
1,31 0-5 * * * root adjkerntz -a

run reports on network usage

203

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 203

*/5 * * * * root /usr/local/bin/mrtg /usr/local/etc/mrtg/mrtg.conf

routine maintenance for Weinstein.org
0,30 * * * * cd /home/pdw/public_html/weinstein.org; make tabernacle 2>&1
>/dev/null

seti@home client for pdw
0 1,5,9,13,17,21 * * * cd /usr/local/bin/setiathome; ./setiathome -nice 19 >
/dev/null 2> /dev/null

5. At the end of the file, add the following lines:

Copy docs directory to a local backup directory every hour
Entered by (your name) on (today’s date). Version 1.0
0 * * * * userid cp -r ~~username/docs ~username/backups

At the top of the next hour change into the backups directory and do a detailed directory listing:

$ ls -l
total 1
drwxr-xr-x 0 userid userid 4096 Feb 8 14:00 docs
$

How It Works
Open /etc/crontab in a text editor again to understand the magic of cron. The first few lines are pretty
straightforward; they set up the environment for cron to do its job:

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
HOME=/

Here’s an explanation of each entry:

❑ SHELL— The shell cron will run under.

❑ PATH— The directories that will be in the search path for cron. That is where to find most of the
programs installed on the system from which cron will probably be invoked at the scheduled time.

❑ MAILTO— Who gets mailed the output of each command, if a command cron is running has out-
put. If no user if specified, the output will be mailed to the owner of the process that produced
the output.

❑ HOME— The home directory for the cron application.

The second part of the crontab file defines the conditions for when and what, the details of which are set
up in a space-separated series of fields. There are normally seven fields in an entry:

0 * * * * userid cp -r ~~username/Mail ~~username/backups; cp -r ~~username/docs
~username/backups

Each entry is generally preceded by comment lines (each starting with a #) that describe or otherwise
identify the entry. These are discussed in the “Properly Documenting the Crontab File” section, coming
up next.

204

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 204

Here’s a rundown on the fields:

1. Minute: The minute of the hour on which the command will run. The value in this field is a
number from 0–59. This example runs on the hour, so the minute value is 0.

2. Hour: The hour on which the command will run. This entry is specified using the 24-hour clock.
That is, the value must be between 0–23, with 0 equating to midnight. An asterisk (*) indicates
every hour, as in the example.

3. Day of month: Day (1–31) the command is to run. If the command is to be executed on the 19th
of each month, for example, the value for this field would be 19. An asterisk (*) indicates every
day, as in the example.

4. Month: The month in which a specified command will run. The value may be specified numeri-
cally, 1–12 or as the name of the month, Jan–Dec, using the first three characters only. (Case does
not matter; sep is the same as Sep.) An asterisk (*) indicates every month, as in the example.

5. Day of week: Day of week for a command to run. The value can be numeric, 0–7, or the name of the
day, Sun–Sat, using the first three characters only. (Case does not matter; thu is the same as Thu.) If
numeric, both 0 and 7 equate to Sunday.

6. User: The user who runs this command.

7. Command: The command to be invoked. This field may contain multiple words or commands —
whatever it takes to get the job done.

Properly Documenting the Crontab File
Comments are a useful feature in any configuration file and should be used to the fullest extent possible.
They enable you to document what you add or modify in the file. A # symbol precedes a comment —
anything to the right of the #, and on the same line, is part of the comment. So while it’s possible to begin a
comment anywhere on the line, it’s good practice in these files to keep comments on lines by themselves, as
the example in the previous section illustrated:

Copy docs directories to a local backup directory every hour
Entered by (your name) on (today’s date). Version 1.0

There is some important information that should always be communicated in the comments, including:

❑ Name of the person who added/modified the entry

❑ How to contact that person if anything goes wrong

❑ Date when the entry was added or modified

❑ The purpose of the entry (or of its modification), specifying the files it acts on

Remember, documentation is effective only if it remains current. Up-to-date documentation can be useful
for building additional scheduled routines, understanding normal administration routines, and helping in
disaster recovery, among other things. Running a computer system can be a complex job, but the work is
made a little easier when everything is properly documented.

205

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 205

Building Complex Schedules
What if the copy commands should be executed at multiple hours, but not every hour? Not to worry,
multiple events can be scheduled within a field by separating all instances with commas and no space
between. The following example will run the script on the first minute of every other hour, starting at
midnight.

1 0,2,4,6,8,10,12,14,16,18,20,22 * * * userid cp -r ~~username/docs ~username/backups

If both the day of month and day of week fields are specified, the command will execute when either
event happens. This example will run the command at midday every Monday and on the 16th of each
month:

* 12 16 * 1 userid cp -r ~~username/docs ~username/backups

It produces the same result as both of these entries put together:

* 12 16 * * userid cp -r ~~username/docs ~username/backups
* 12 * * userid cp -r ~~username/docs ~username/backups

To schedule a backup Monday through Friday only, try this:

* * * * 1-5 userid cp -r ~~username/docs ~username/backups

Besides providing a list (as the first complex examples showcase) or range (as the in last example) of val-
ues for a value of time, the crontab file syntax also provides a way to enter step values. Think of step val-
ues as stepping stones. A person can step on every stone on a path or every second stone on a path. For
example, if a shell script that backs up important data during the course of a day is to run every 5 hours,
a step value of 5 can be entered. In this example the syntax would be “*/5” with the “*” representing
every possible hour and the “/5” representing each hour to step:

* */5 * * * userid cp -r ~~username/docs ~username/backups

Moreover, steps can also be combined with a list. So, if the backup script is to be invoked every other
day in the middle of the month, the command would look like the following, where a range of dates in
the middle of the month (10-16) is provided and a step value (/2) denotes to step ahead 2 days before
executing the command again:

* 12 10-16/2 * * userid cp -r ~~username/docs ~username/backups

This is the same as the following list example:

* 12 10,12,14,16 * * userid cp -r ~~username/docs ~username/backups

Reports and Log Rotation on Linux
Another common use for cron is housekeeping of system logs and generating productive usage reports.
For example, there are a number of reporting scripts in four /etc subdirectories of most Linux distribu-
tions: cron.hourly, cron.daily, cron.weekly, and cron.monthly. The scripts in these directories
are run either hourly, daily, weekly, or monthly, respectively, by cron.

206

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 206

Here is a sample directory listing for /etc/cron.daily on a Red Hat Enterprise Linux system:

$ ls
00-logwatch inn-cron-expire rhncheck sysstat
00webalizer logrotate rpm tmpwatch
0anacron makewhatis.cron slocate.cron tripwire-check
$

00webalizer is an example of a shell script for processing Web server logs and may look something like this:

#! /bin/bash
update access statistics for the Web site

if [-s /var/log/httpd/keplersol.com-access_log] ; then
/usr/bin/webalizer -cQ /etc/webalizer.keplersol.conf

fi

if [-s /var/log/httpd/weinstein.org-access_log] ; then
/usr/bin/webalizer -cQ /etc/webalizer.weinstein.conf

fi

exit 0

In Chapter 13 you learn how shell scripts work, how to read them, and how to create them; for now, just
know that this script verifies that the log files exist and then, using configuration files created for the webal-
izer program, processes those logs, generating reports that can be viewed at a location predefined within the
configuration file.

The following crontrab entry denotes that these routine reports will be executed using the root user’s
permissions. That is, these scripts will be run as if user root invoked the run-parts command with the
argument specifying the directory whose collection of scripts is to be executed. The run-parts com-
mand runs all of the scripts within that directory.

Here is an example of the crontab file covering the four log subdirectories:

01 * * * * root run-parts /etc/cron.hourly
02 4 * * * root run-parts /etc/cron.daily
22 4 * * 0 root run-parts /etc/cron.weekly
42 4 1 * * root run-parts /etc/cron.monthly

As you can tell, the cron.hourly, cron.daily, cron.weekly, and cron.monthly directories are pro-
cessed every month (* in the month field). The monthly directory is done only on the first day of the
month, at the 4:42 a.m. The weekly directory scripts are executed on Sunday (0 in the day field). The
daily directory runs at 4:02 a.m. every day (* in day field). The scripts in /etc/cron.hourly run on the
first minute of every hour, every day of every week of every month (* in all of those fields).

Managing Output from Cron
As noted previously, the output from cron is mailed to the owner of the process, or to the user specified
in the MAILTO variable. However, if the output should be mailed to someone else instead, you can use
the Unix pipe to just pipe the output to the mail command. Note that the mail command is invoked

207

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 207

using the -s switch, which sets the subject of the e-mail being sent to the string that is provided follow-
ing the switch:

0 * * * * userid cp -r ~username/docs ~username/backups | mail -s “Backup Script Output”
username

The output also could be redirected to a log file:

0 * * * * userid cp -r ~username/docs ~username/backups >> log.file

This example redirects the output of the copy command to a log file, which can be useful in some
instances.

Controlling Access to Cron
Cron gives administrators the capability to specify who may and may not use it. This is done by the use
of /etc/cron.allow and /etc/cron.deny files. These files work the same way as other daemons’
allow and deny files. To prevent a user from using cron, just put his username in cron.deny; to enable
a user to use cron, place his username in the cron.allow. To prevent all users from using cron, add the
line ALL to the cron.deny file.

If there is neither a cron.allow nor a cron.deny file, the use of cron is unrestricted.

crontab
Because Unix is a multiuser operating system, a number of applications such as cron have to be able to
support many users. For security reasons, it would be unwise to provide all users access to /etc/
crontab where they can easily see what critical routines are being run and when. Far better is for each
user to have his or her own crontab file, which can be created, edited, and removed by the command
crontab. This command creates an individual crontab file and is often stored in /var/spool/cron/
crontabs/user, although it may be found elsewhere (perhaps /var/spool/cron/user or /var/
cron/tabs/user) depending on the Unix flavor being used.

Here are the command arguments for crontab:

Argument Description

-e Edits the current crontab or creates a new one

-l Lists the contents of the crontab file

-r Removes the crontab file

The command crontab -e will cause the user’s crontab file to load in the editor specified in the
EDITOR or VISUAL environment variable.

A user’s personal crontab follows exactly the format of the main /etc/crontab file, except that the
MAILTO variable needn’t be specified because the default entry is the process owner, which is generally
the user.

208

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 208

One-Time Execution with at
To schedule a command, series of commands, or script to run at a specific time, but only once, use at
instead of cron. at is the method for scheduling one-time execution of events by atd and is intended for
scheduling specific jobs under precise circumstances. In other words, to rotate logs every Saturday at is
not appropriate — that’s what cron if for — but if on Thursday afternoon a meeting gets scheduled for
Friday morning and you want to make sure nothing disastrous happens to a critical document you’ll
need for it, you may want to make sure a backup copy is made at the end of the business day. That job is
perfect for at. To see how it works, select one of your documents and try it out.

Try It Out Perform a One-Time Backup of an Important Document
1. Locate your document and check the current date as in the following:

$ ls
important_report.swx
$ date
Thu Dec 9 14:53:06 CST 2004

2. Type the at command followed by the time you want the job to occur:

$ at 17:00

3. Type the copy command (cp), the name of file you want to copy, and the location of the file in
which you want to place the backup copy on the file system, and then press Enter:

at> cp important_report.swx ~username/backups

4. Press Ctrl + D to exit the at shell; you should see something akin to the following:

job 1 at 2004-12-10 17:00
$

Use the atq command to double-check that the job has been scheduled. To delete a command before it
has been executed, use the atrm command:

$ atq
1 2004-12-10 17:00 a username
$

To delete a command before it has been executed, use the atrm command:

$ atrm 1

How It Works
The first step was to locate the document in question. This is because the working directory, the
environment — except for the variables TERM and DISPLAY, and the umask — are retained by at
from the time of invocation.

at reads a command or series of commands from standard input or a specified file. The command or
commands collected by at are executed at a time in the future also specified to at. The commands are
executed using either the shell set by the user’s environment variable SHELL or /bin/sh.

209

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 209

at allows for fairly complex time specifications. In its most basic form, at accepts times in the HH:MM
format. If that time is already past in the current day, the next day is assumed, so no specific date is
given. Hours can be 0–24, or they can be 0–12 a.m./p.m. (no space between number and am/pm), and
you can also specify midnight, noon, or, for those in the United Kingdom, teatime (4 p.m.). Here are
some examples of various at times:

$ at 17:45
$ at 5pm
$ at 5:15pm
$ at noon
$ at teatime

You can denote the day the job will run by giving a date in the form MMDD or MMDDYY. The date specifica-
tion must follow the time specification:

$ at teatime 010105

Times can also be relative to a specific time. That is, you can do a countdown-type argument that says
how much time, in minutes, hours, days, or weeks from the specific time a scheduled job needs to be
executed. The following will carry out a command 5 minutes from when the at command was invoked:

$ at now + 5 minutes

Or to run a job 2 hours from now, you’d use:

$ at now + 2 hours

To run a job at 4 p.m. 3 days from now, you’d use:

$ at 4pm + 3 days

Or to run a job 1 week from now, you’d use:

$ at 1 week

In any case, the next step for creating an event is to provide a command or series of commands for at to
execute at the defined time. You’ll recall that in the first example the command for copying the impor-
tant documents was input at the command line, also known as from standard input:

at> cp important_report.swx ~username/backups

The command can also come from a file. To do so, use the -f switch, followed by the file in which the
commands reside:

$ at 17:00 -f ~jdoe/bin/backup
job 3 at 2004-12-10 17:00
$

210

Chapter 11

14_579940 ch11.qxd 3/21/05 6:11 PM Page 210

Controlling Access to at
As with cron, a Unix administrator can control which users are allowed to use at. One method of access
control is to simply create an /etc/at.allow file. In this way the at daemon will limit access to those
users listed within the at.allow file, denying access to everyone else.

Another method of access control is to create an /etc/at.deny file, which is done by default on most
Unix systems. An /etc/at.deny file works in the opposite way as an /etc/at.allow file. It controls who
cannot use at— the users listed in the file are denied permission, and everyone else can use the command.

The question of which access control method, and thus which file to use, /etc/at.allow or /etc/at.deny,
comes down to a question of your management style. If, as the administrator, you prefer to let people use
things until they abuse the privilege, then use the default /etc/at.deny. If you believe that no one needs to
use the at command unless directly granted the privilege, create and use /etc/at.allow.

If neither of these two files exists, only the superuser is allowed use of at. To allow everyone to use at,
the administrator needs to create an empty /etc/at.deny file. (A note for the administrator: this is usu-
ally the default configuration.)

Summary
You now understand the two basic parts of system automation: having a valid system clock setting and
running cron daemon with configuration information. Remember that there are a number of things to
keep in mind when it comes to setting up commands, scripts, or applications to run at a specified time:

❑ The system clock is the operating system’s timepiece.

❑ The hardware clock is important to setting the system clock at boot time.

❑ There are a number of ways to keep the system clock synced, including syncing with other com-
puters on a network.

❑ Cron is the Unix application that keeps track of when a scheduled task is to be run.

❑ crontab is the configuration file for the cron daemon.

❑ Crontab is also the name of a command tool for editing crontab files for individual users.

❑ at is the Unix application that keeps track of when something is to be executed once, at a spe-
cific time.

Exercise
Create an entry for an individual user’s crontab file that lists the user’s directory and e-mails the out-
put to the user every other day of the week.

211

Running Programs at Specified Times

14_579940 ch11.qxd 3/21/05 6:11 PM Page 211

14_579940 ch11.qxd 3/21/05 6:11 PM Page 212

12
Security

In the face of increased threats to computer systems, information security has grown to major impor-
tance in the world of computing. The menaces include external malicious attacks (from corporate
espionage to hackers and crackers) and, if your system has users, internal security breaches (from dis-
gruntled employees to unscrupulous visitors). Hardware, software, networks — the vulnerabilities are
numerous. Unix security is as much philosophy as it is technical mastery. This chapter introduces the
major security concepts and some commands you can use to make your systems more secure.

The Basics of Good Security
An age-old saying in computer security circles is that the only computer that is completely secure
is one that is disconnected from any network, turned off, and embedded in a block of concrete. Of
course, that’s an exaggeration, but it does illustrate the point that no system is 100 percent secure.
Security is not something that can be enabled by clicking one checkbox in the system, and it is not
simply a matter of installing a software program and being done with it. Security is an ongoing
journey, and one that can be fascinating.

Computer security is much like security in the real world. You probably have one or more locks on the
front door of your house to discourage strangers from entering your home and helping themselves to
your belongings. While you have made an effort to safeguard your home, you probably can imagine a
situation in which your security measures could be overridden — in case of fire, for example, where
firefighters would need to enter your home, perhaps by force. It is also likely that you have your
savings secured in a bank. You may also store your valuables in a safe deposit box, a place much safer
than in your home. All of this is much like computer security, in that you decide what needs the abso-
lute most protection, and what requires less protection.

There are three basic principles for protecting information security systems:

❑ Confidentiality — Information must be kept from those who do not have a need to know
(keep private information private).

❑ Integrity — Information must be free from unauthorized changes or contamination.

❑ Availability — Information must be available to those who need access to it.

15_579940 ch12.qxd 3/21/05 6:09 PM Page 213

Assets Worth Protecting
Before you can begin to safeguard your system, you need to know what you are protecting. Although
everyone has different specific types of data, and different needs, it’s possible to create a very general
listing of assets that are common to all computers and users in your company or organization. Take
some time to identify and define these assets:

The amount of time, effort, and money you spend securing your system from attack should be based on
the costs associated with the loss of your hardware, software, and information resources. For example,
you wouldn’t spend $10,000 dollars securing a system that if successfully attacked would lead to a loss
valued at $100. Once you understand the value of what you are protecting, you can determine the
appropriate level of resources to spend securing those assets in a meaningful and sensible manner.

Take some time to identify and define these assets:

❑ Hardware — The physical components of your computer system have value. If the system is
located in an easily accessible place without any physical security in the form of locked doors,
then it can be stolen. If someone can physically touch the computer system, he or she can poten-
tially access all of the information it contains because the system can be booted off of alternative
file systems (CD-ROMs, USB drives, and so forth), bypassing the primary operating system. An
attacker could also insert network monitoring software to capture all the information passed
over the network, a keylogger (stealth software that captures every keystroke you make), or
many other means of assault. An attacker could also simply take the computer and remove the
hard drive to gain access to the information the system holds.

❑ Network connection — Your network connection is an extremely valuable resource. Attackers
can use your bandwidth (or network capacity) in various kinds of attacks against other systems.
They also can use your network connection, effectively using your identity on the Internet (or at
a minimum mask their identity), which to anyone on the outside would look like the attacks
were coming from your location.

❑ Data — Everything that you use your computer for is stored in the system: your e-mail, address
lists, personal files, and other things that you have personally created or modified. Any number
of confidential documents are located in your computer. Think about how difficult it would be
to recreate everything located on your hard drive if you had to. There’s also the threat that
someone can use that information to assume your identity, accessing your financial-planning
program and e-mails.

❑ Services — If you use your computer to share information with any other users either in your
department at work or with your family at home, it will be important to you that your system
continues to provide those services without interruption. If you have a home-based business
that relies on your Web server for marketing your product to customers, for example, you need
to have the Web service running at all times, or you’ll lose business.

Potential Issues
From viruses to data theft to denial-of-service attacks, there are plenty of things that can create havoc in
your computer system. To protect against what you can and to minimize the impact of other events, it
helps to have some idea what the potential dangers can be, as well as what you can do about them.

214

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 214

The following are the types of things that can go wrong, and those that you want to protect against and
minimize the impact of:

❑ User error —By far the most common cause of data loss is from simple user error, especially on Unix
systems, where a misplaced space or character can result in serious system modification without the
confirmation that some other operating systems provide by default. (Unix was originally designed
by and for programmers, and intentionally utilizes a terse command syntax at the shell level, which
generally assumes proficiency on the part of the operator.)

❑ Hardware failure—Computers are mechanical devices, and while it is common to focus on the
security of the software and operating system, the physical components are also necessary for opera-
tion. The power supply and hard drives are two components that can break. If either of these ceases
to function, the result can range from partial to complete unavailability of the system.

❑ Theft of hardware — As previously mentioned, it is important to safeguard the physical computer.
If the machine is not in a secure location, it can be stolen. All of the software security measures in
the world will not protect your data if someone can simply remove the hard drive from the system
and mount it on a system of his own.

❑ Data manipulation — If unauthorized access to your system is gained, any data on that system
may be deleted, modified, or copied. If you are providing information via the Web, the data in
your Web pages could be changed or deleted. Private files could be copied and shared with
your competitors, or data can simply be deleted.

❑ Theft of services — If your system is compromised, your network bandwidth can be made
available for others to access. For example, a hacker could create a folder on your system; fill it
with copyrighted materials such as computer software, music, and movies; install an FTP server
on your system; and then advertise that software. Unbeknownst to you, your machine would be
providing services to an unintended audience.

❑ Eavesdropping — When you use your computer to communicate with other systems, such as by
using e-mail or the Internet, third parties may be able listen in. This can be harmful in many
ways, notably by exposing information that is meant to be confidential such as financial infor-
mation and authentication information, including passwords and usernames on other systems.

❑ Viruses — There are other threats such as viruses, spyware, spam and other malicious software
that spreads on the Internet. For the most part, these do not affect Unix systems. However, you
should certainly be aware of the threat and use common sense when dealing with email con-
taining attachments, especially from unknown parties. However, the risk of running into viruses
is far lower in Unix than in operating systems because of Unix’s security features as well as its
many diverse implementations.

Securing Your Unix System
The rest of this chapter can help you run as secure a machine as possible, whether you are the sole user
on the system or you maintain a system shared by multiple users. Think about security as a goal, not a
destination — there will never be a point where it is done, and you can wash your hands of the matter.
Always consider security in your approach to your systems and you will be ahead of the game.

215

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 215

Password Security
The basic authentication method for Unix host systems is a combination of a username and a password.
In practice, your username is common knowledge because it’s generally used in your e-mail address. It
is often exposed by the system, both to local users via programs such as who, and to remote users via
such methods such as finger and rwho. This makes it imperative for you to choose good passwords,
keep those passwords secret, and change them with some regularity. Your password is the first line of
defense against intruders entering your system at the operating system level. There are programs in
common use that exist solely to attempt to guess passwords.

What makes a good password? A combination of things. For one, a good password is extremely difficult to
guess or to be discovered by password-cracking tools. That means using no personally identifiable informa-
tion such as your birth date or telephone number, pet names, sibling names, parents’ names — in fact, stay
away from names altogether, including sports teams, brand names, and so on. You also want to avoid using
words that appear in a dictionary, as well as those that are jargon from a specific industry — especially an
industry with which you are affiliated. Do not use common abbreviations. A good password consists of a
combination of uppercase and lowercase letters as well as numbers and punctuation (nonalphanumerics).

One common suggestion is to take the first letter of each word in a phrase that is familiar to you —
“Now is the time for all good men to come to the aid of their party,” for example — and capitalize them
to form a base for your password: NITTFAGMTCTTAOTP. Then take a portion of that sequence — use at
least eight characters — and replace some of the letters with numbers and nonalphanumerics. In this
example, you could use the beginning of the sequence, NITTFAGM, and replace the I with a 1 and the F
with a 4 to get N1TT4AGM. Have fun with the case, such as n1tT4aGm, and add punctuation, for a final
password of n1tT4-aGm&. (Of course, you shouldn’t use this password now that it has been published,
but it’s a good example of the process of creating a strong password.)

No matter how you create a strong password, make sure that you can memorize it. Do not write the
password down. That’s worth repeating: Do not write your password anywhere. People who write
down their passwords and leave them near their computers reduce security as much as having a weak
password in the first place. If you absolutely must write down the password, keep it in a safe location,
physically on you; still, it’s highly recommended that you do not write it down.

Password Discovery Programs
Software that attempts to guess passwords through the use of multiple dictionaries and common sequences
has existed for quite some time. It tries many passwords one right after another until it finds a match. This
technique is called a brute force attack. As computers get faster and faster, this software gets more and more
sophisticated (and quicker) at discovering passwords. A password such as theSafe9a55w0Rd once would
have taken years to crack or discover, but now it could be done in a matter of days. That’s why passwords
must be changed frequently (typically 60–90 days) to achieve the best level of security. By changing your
password frequently, you most likely will have changed a password that may have been discovered before
the attacker has a chance to use it.

Two of the most popular password discovery programs are Crack and John the Ripper. John the Ripper is a
more modern implementation that compiles on almost all modern operating systems. Both programs oper-
ate in a similar fashion, working against the system password file (usually /etc/passwd or /etc/shadow),
trying passwords until finding a match. System administrators and security professionals often utilize these
tools to determine the password strength of their user accounts. If you decide to use these tools to audit

216

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 216

system passwords, you must first have the system owner’s permission in writing or you could face severe
criminal or civil penalties.

Do not use any tools described in this chapter without thoroughly understanding the implications of
their use and the potential legal ramifications of using them without proper authorization from the
owners of the system on which you want to use them. These software programs are valuable tools in a
system and security administrator’s toolkit because they enable you to determine potential system weak-
nesses before an attacker can. Remove these tools after using them so that no unauthorized person can
use them to attack your systems.

If you have obtained the proper permissions for the system owners to run John the Ripper, you can
download it at http://openwall.com/john. Full instructions on the installation and use of this pro-
gram are available at the Web site.

Limiting Administrative Access
As you learned in Chapter 3, the root user — superuser — has absolute control over the system, includ-
ing the capability to modify other users’ accounts or the system with impunity. The supremacy of this
account necessitates that the it be afforded a higher level of protection than other accounts. When mali-
cious entities are attacking a system, they almost always attempt to gain access to the root or superuser
account because of its unlimited power.

UID 0
The root user has the userid (UID) of 0. The root user account should be afforded the highest security, includ-
ing the strongest password possible. If this account is compromised, the system is untrustworthy for data
storage at the minimum and the complete domain of a malicious entity in the worst case. To protect your sys-
tem, use the root account only when it is absolutely necessary, such as for system administration. You can
accomplish this best by never directly logging into the root user account from the initial system startup.
Instead, log in as a regular (nonprivileged) user and then use the su command to switch users to the root
account for the time you need it. For example, to see the encrypted password string in /etc/shadow for the
root user, su to the root user, run the command you need, and then log out of the root user account, like this:

jdoe@ttyp1[~]$ su - root
root@ttyp1[~]# cat /etc/shadow | grep root
exit
logout
jdoe@ttyp1[~]$

By not using the root account for day-to-day activities, such as Web browsing or text editing, you pre-
vent the possibility of running a program you download off the Internet as the root user, which could
lead to system compromise. You also avoid a litany of other possible scenarios in which the root user
account could be exposed to malicious users.

Additionally, check /etc/passwd on a regular basis to ensure that no users other than the true root user
have a UID of 0 (field three). For example, say you ran cat on /etc/passwd and showed the following:

root:x:0:0:root:/root:/bin/bash
badguy:x:0:100:/home/badguy:/bin/bash

217

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 217

Users root and badguy both have full root privileges on the system based on their UIDs (0). If you find
any users other than root with a UID of 0, research the validity of that entry immediately because it
could potentially be a malicious hacker who has gained access to your system.

Another security measure to consider is not allowing users to directly log into the system as the root
user from a remote console. Every Unix system handles this differently, so consult your system docu-
mentation for information about how to disable remote root logins.

Root Management Options
Traditionally, administrative tasks are completed by using the su (switch user) command, which enables
a user to become root by entering the password assigned to the root account. This is frowned upon for
many reasons. Most importantly, the root account generally has no accountability when a system has
multiple users, all of whom are familiar with the root password; if one of them uses su to become root,
and then carries out a command, that action is simply logged as a command executed by the user root,
who generally has the long-form name of System Administrator. That is not helpful in the case of error,
when you’re trying to track down exactly who was logged into the system and who executed specific
commands.

Here’s where the sudo or (SuperUser Do) command helps you out, enabling you to track use of privi-
leged commands and providing some protection against giving out the root password to others for
system maintenance. It allows flexible delegation of administrative tasks, enabling you to authorize indi-
vidual users to perform explicit actions that would generally require UID 0. The user uses sudo with his
or her own username. The user simply precedes the command he orshe wants to execute with sudo,
such as sudo shutdown. The user is then prompted for his or her own password, and the action proceeds,
and is logged (if logging has been configured), including the ID of the user who executed the command.
This logging occurs for both successful and unsuccessful access attempts.

sudo is far superior to su for several reasons, notably:

❑ Enhanced logging — Each action is verbosely logged (with command arguments) using the con-
figurable syslogd, including username.

❑ Flexible configuration — Sudo enables you to grant administrative access to individual users
and groups.

❑ Granular access control — Sudo enables you to grant individual users and groups access to only
the explicit administrative commands that you choose.

Setting up Sudo
Most versions of Unix include sudo, but if you don’t have the package or source code, you can down-
load the latest version from http://courtesan.com/sudo/. After installing sudo, you generally have
three files whose locations vary depending on how sudo was installed:

❑ sudo— The binary program that’s called when you use the sudo command. It is not modifiable
in its binary form.

❑ visudo— A binary program that enables you to safely edit the sudo configuration file sudoers.

❑ sudoers— The plain text file that you edit to modify or add permissions.

218

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 218

When sudo is invoked, it reads the sudoers file, which generally is located in the /etc. You use visudo
to edit /etc/sudoers because it locks the file for editing and also performs a basic syntax check on the
file before committing changes.

Here’s a basic /etc/sudoers file:

sudoers file.
#
This file MUST be edited with the ‘visudo’ command as root.
#
See the sudoers man page for the details on how to write a sudoers file.
#

Host alias specification
Host_Alias LINUX_SERVERS=linux1,linux2, 192.168.1.3
User alias specification
User_Alias ADMIN=jdoe
Cmnd alias specification
Cmnd_Alias READLOG=/usr/bin/less /var/log/lastlog, \

/usr/bin/less /var/log/system.log, \
/usr/bin/less /var/log/mail.log

User privilege specification
ADMIN LINUX_SERVERS=READLOG

The configuration file has five sections. The first three allow you to create aliases, which can be used later in
the file’s fourth section, user privilege. There are three kinds of aliases: host, user, and command. By defin-
ing aliases, it becomes easy to manage specific users and commands. In the example file, the user alias
ADMIN contains the user jdoe. If you want a new administrator, simply add his or her name to the alias,
and he or she will have access to the same commands as the other admins — individual programs need not
be configured. The same logic goes for the command aliases. The fifth section, “Defaults specification,” is
where you can set up the default behavior of sudo (for more information, see the sudo man page.)

The host alias is especially useful because it allows the same sudoers file to be used on multiple machines,
through the use of Network File Services (NFS), although the commands and users on those machines may
differ. This enables you to standardize administrative options across machines, which is always a good
idea. The more you can standardize, the less falls thru the cracks, and the more secure your setup will be.

For more information regarding setting up sudo on your system, check the local man page (man sudo)
or the sudo home page at http://courtesan.com/sudo/.

Try It Out Use Sudo
John Smith, a system administrator just hired into the system administration group, needs to run some spe-
cific commands as the root user. John, whose username is jsmith, has to run the command cat /etc/shadow
to verify that users were put into the system correct. He will run this command only on the linux5 system,
which is the system on which the sudo command is located. As the sudo administrator, you must modify the
sudoers file to give jsmith this access.

If you don’t already have the sudo program on your system, download and install it (after obtaining
proper permission if you don’t own the system) as described in Chapter 19.

219

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 219

1. Log in as the root user and use the visudo command to edit your sudoers file:

visudo

2. Your sample sudo file displays in the screen in a vi session. Here’s an example:

sudoers file.
#
This file MUST be edited with the ‘visudo’ command as root.
#
See the sudoers man page for the details on how to write

a sudoers file.
#

Host alias specification
User alias specification
Cmnd alias specification
User privilege specification

3. To give John the access he needs, add the following entries in the appropriate sections (if you
don’t put it in the correct section, the commands still work but will be harder to manage):

Host_Alias Linux_System=linux5
User_Alias Administrator=jsmith
Cmnd_Alias CHECK_SHADOW=/bin/cat /etc/shadow
Administrator Linux_System=CHECK_SHADOW

Your sudoers file would look similar to this:

sudoers file.
#
This file MUST be edited with the ‘visudo’ command as root.
#
See the sudoers man page for the details on how to write

a sudoers file.
#

Host alias specification
Host_Alias Linux_System=linux5
User alias specification

User_Alias Administrator=jsmith
Cmnd alias specification

Cmnd_Alias CHECK_SHADOW=/bin/cat /etc/shadow
User privilege specification

Administrator Linux_System=CHECK_SHADOW

4. Save your changes.

Now the user jmith only needs to run the following command to view the contents of the
/etc/shadow file as root:

$sudo /bin/cat /etc/shadow

After trying this exercise, remove all the entries you added to sudoers. This prevents a user with the account
of jsmith from being able to run the commands you just added. (Do not do this exercise on a live account.)

220

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 220

How It Works
In the Host_Alias section of sudoers, the Linux_System system alias is identified as linux5. In
User_Alias, the Administrator alias is set to jsmith, the new administrator’s username. In the
Cmnd_Alias section, command aliases are set using absolute paths. The last line puts all the aliases
together: Administrator is the user (jsmith) who can run the command; Linux_System is the system
(linux5) on which the user can run the command; and the command that can be run is indicated by the
alias CHECK_SHADOW, which equates to /bin/cat /etc/shadow.

Be aware that there are some commands with which sudo users can escalate their privileges. It is pru-
dent to carefully consider which commands you provide sudo access to. In general, you should not give
that access to the following:

❑ Commands that allow for shell escapes. If you give a user sudo access to vi, for example, the
user can escape to a shell and have full access to the system as the root user. Other commands to
be careful of are the less command and any custom-made programs.

❑ The zip, gzip, or other compression/decompression commands. These can be used to alter sys-
tem files as the root user.

Use the absolute path to commands in sudo, or someone can write a malicious script and name it the
same as a valid command.

You should generally not give users access to a shell directly with sudo because that enables them to
navigate and modify the system as the root user.

Ensure that you are fully aware of a command’s capabilities before you grant sudo access to it.

System Administration Preventive Tasks
There are a number of system administration tasks that can be called preventive. They are those that you
do to help prevent your Unix system from being compromised. System administration tasks include sys-
tem maintenance and cleaning. This section explores some of them.

Remove Unneeded Accounts
Unix system distributors often include a group of accounts that provide easy use of the system.
Sometimes these accounts are very beneficial and are set up with adequate security, although older ver-
sions of Unix provide accounts by default that are not needed and can be compromised if not set up
properly. Removing accounts you don’t need is a good security measure.

For system accounts, set very strong passwords that are known to as few people as possible.

Review the /etc/passwd file (or other account files as appropriate) and identify accounts that you don’t
recognize. Carefully research the purpose of the unfamiliar system account — you may find that you do
need the account for specific functionality. Before removing any unnecessary system accounts (described

221

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 221

in Chapter 3), test your changes on a nonproduction system. If that’s not an option, here’s how you can
disable the account:

1. Make a backup of the /etc/shadow and /etc/passwd files. If you make the copies on the sys-
tem, ensure that the permissions are set to 700 and the files are owned by root.

2. Edit /etc/passwd, putting /bin/false as the shell entry while removing the current shell
(/bin/sh, for example) for any system accounts you want to disable.

3. Edit /etc/shadow, entering a * in the encrypted password field.

These steps prevent the account from being logged into, because the user will not have a valid shell or
password.

For accounts that are needed, use sudo to enable users to utilize the sudo command to su to the
accounts instead of having users use the su command by itself. This will give you maximum visibility
on who is using the accounts. By preventing direct logins, you can track who is logging into a group
account in case there are any problems.

Patch, Restrict, or Remove Programs
Unix provides a lot of its functionality through programs that are included with the system. This gives
users much needed flexibility, but also presents a problem in that malicious users/attackers can use the
same software for less benign purposes. New vulnerabilities are found in software daily, and the ven-
dors or community supporting the software release patches accordingly. To keep your system software
up-to-date, you need to check your software vendors/developers’ Web sites for patches often. And don’t
forget to patch your Unix system software.

Remove or restrict unneeded software from your system to prevent malicious users from using it in
unintended ways and to reduce the administrative burden of patching it. One example is the gcc com-
piler, which is useful for building source code, but can be exploited by malicious users to compile dan-
gerous programs such as password crackers or other software that can give them privileged access to
computer systems. You may require gcc for compiling software, in which case you should severely
restrict (with octal 700 permissions) access to the software, or if it is not needed, you should completely
remove the program.

Before removing any software, test your changes on a nonproduction system. If you don’t have a pro-
duction system, rename the software (gcc_old, for example) and wait a period of time to make certain
that it isn’t needed for a specific application or purpose that may not have been immediately evident. If
no problems occur, then remove the software.

Software also has dependencies that aren’t always obvious, so using your system’s built-in software or
package management software (such as rpm for Linux or pkgrm for Solaris) will provide some protec-
tion from accidental deletion of crucial software. If you try to remove software without going through
the package management software, you can create dependency issues (one program may depend on
another program being previously installed). The built-in package management software will prevent or
at least warn you before removing software that other programs may need to operate correctly.

222

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 222

Disable Unneeded Services
A service (described in more detail in Chapter 16) is a program that provides a specific function and can
supply needed functionality for legitimate users, such as the telnet service that provides telnet function-
ality. Services also can be used by attackers to gain access to your system or to elevate their privileges. In
most Unix systems, the /etc/inetd.conf file (xinetd files for Linux) contains a list of valid services
available for users. To remove a service’s functionality, you can comment out the line referring to the ser-
vice in the file by putting a pound sign (#) in front of the service name and restarting the inetd or xinetd
service. For example, to disable the telnet service on a Solaris system, you’d edit the /etc/inetd.conf
file to comment out the line that says:

telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd

So that it looks like:

telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd

Then you’d save the file and restart the inetd service from the command line like this:

#ps -ef | grep inetd
root 220 1 0 Nov 20 ? 0:00 /usr/sbin/inetd -s
#kill -HUP 220

Restarting the inetd service forces it to reread its configuration file (/etc/inetd.conf), facilitating your
change.

You should remove rsh, finger, daytime, rstatd, ftp (if not needed), smtp and other software that are not
specifically needed by the system for day-to-day operation. If you need the service at a later date, you can
uncomment it by removing the # in its config file and restarting the inetd process as described previously.

Monitor and Restrict Access to Services
You can restrict access to remote services with TCP Wrappers. This small program enables you to inter-
cept calls for specific services and then log access to those services as well as restrict access based on
where the request is originating.

Download tcpd (TCP Wrappers Daemon) from ftp://ftp.porcupine.org/pub/security/. Compile
the software as described in Chapter 19, and then edit your /etc/inetd.conf file to point to the tcpd
wrappers daemon for the services tcpd supports (usually telnet, ftp, rsh, rlogin, finger, and some others).
On a Solaris 10 system, for example, to use tcpd for the telnet service because you are required to run tel-
net, find the following line in /etc/inetd.conf:

telnet stream tcp6 nowait root /usr/sbin/in.telnetd in.telnetd

Replace the portion that says /usr/sbin/in.telnetd with user/sbin/tcpd (or wherever you saved
the tcpd binary from installation), so that the line looks like:

telnet stream tcp6 nowait root /usr/sbin/tcpd in.telnetd

223

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 223

This allows tcpd to control the connection to in.telnetd service, including the logging of attempted access
to the service. After you have installed tcpd, you can create two files:

❑ /etc/hosts.allow— Lists systems that are permitted to access services You specify the sys-
tems allowed to access the services. For example, to allow all users from 192.168.1.2 to access all
services, you’d add the following entry:

ALL: 192.168.1.2

❑ /etc/hosts.deny— Lists systems that are not allowed to access services. A typical
/etc/hosts.deny file includes the following entry, which denies everything not explicitly
allowed in /etc/hosts.allow:

ALL: ALL

There are many different options for these files, and all changes should be tested on a nonproduction
system before they are implemented. For more information, visit http://www.cert.org/
security-improvement/implementations/i041.07.html.

Implement Built-in Firewalls
Most modern Unix systems include a built-in firewall for restricting access to the system based on crite-
ria set by the system administrator. If your version of Unix includes or has a firewall program available,
investigate its use and implementation. Linux, for example, has the very popular IPTables, Solaris has
SunScreen, and the Mac OS X has Personal Firewall. These firewalls require knowledge of the system
and the ability to determine system access requirements, so use them with great consideration. These
programs are beyond the scope of this book, but you can find more information at:

❑ Linux IPTables —http://netfilter.org/

❑ Solaris SunScreen —http://docs.sun.com/app/docs/coll/557.4

❑ Mac OS X Personal Firewall —http://download.info.apple.com/Apple_Support_Area/
Manuals/servers/MacosxserverAdmin10.2.3.PDF

Other Security Programs
There are a multitude of security programs available for the Unix operating system. Check out as many
as you can to see how each might benefit your system. Here are a few programs to get you started (you
should obtain permission from the system owner before using any of these programs):

❑ Tripwire — A file integrity checker that can determine whether a file has been changed. When
properly configured, it can identify files that have changed on your system, which could be
indicative of hostile activity, such as the change in the /etc/passwd file. Download the pro-
gram at http://tripwire.org for the open-source version, or http://tripwire.com for the
commercial version.

❑ Nessus — A vulnerability scanner that checks for at-risk services on your systems. It has an
easy-to-use graphical user interface and can provide very detailed reports. More information is
available at http://nessus.org.

224

Chapter 12

15_579940 ch12.qxd 3/21/05 6:09 PM Page 224

❑ Saint — A vulnerability scanner with similar functionality as Nessus. More information is avail-
able at http://saintcorporation.com.

❑ NMAP — A port scanning tool to help you identify what ports or services are available on your
system. More information is available at http://insecure.org/nmap/.

❑ Snort — A network intrusion detection tool that can also sniff network traffic or identify when
potentially malicious activity is occurring on your network. More information is available at
http://snort.org.

❑ GNUPG — Gnu Privacy Guard is a tool that enables you to encrypt files on your system to pre-
vent others from accessing them without a special key. More information is available at
http://gnupg.org.

Summary
Security is an ongoing process requiring diligence on the system owners’ part. The information presented
in this chapter is a very high-level, cursory overview of some of the fundamental aspects of Unix security.
Every implementation of Unix has different security requirements and specialized configuration files. To
truly secure your Unix system, you should refer to Web sites dealing specifically with your version of
Unix as well as publications dedicated to the subject of security.

Exercise
Demonstrate how to set up a user with sudo access to switch users to the backupuser account on a sin-
gle system with a hostname of linux_backup.

225

Security

15_579940 ch12.qxd 3/21/05 6:09 PM Page 225

15_579940 ch12.qxd 3/21/05 6:09 PM Page 226

13
Basic Shell Scripting

In addition to being an environment for interacting with the computer, the shell can be used for
programming. Shell programs, often called scripts, are used for a variety of purposes, most notably
system administration. Shell scripts are simply a series of system commands stored in a single file.
These commands are executed automatically and in order each time the file is invoked.

Think for a moment about the possibilities. Any program on the machine can be run from the shell,
with input and output automatically redirected according to your desires. Once you get the hang of
shell scripting, you can automate a vast range of jobs with a few simple scripts. Even better, the jobs
that work best in shell scripts are the ones that are most irritating to do by hand, whether because
they’re boring or because they’re repetitive.

This chapter introduces the basic concepts of shell scripting. The scripts are simple and may seem
trivial, but they clearly illustrate the underlying mechanics that you need to master before you move
on to subsequent chapters and the more advanced methods they contain.

Commenting and Documenting Scripts
Good documenting is critical for good programming. It’s easy, especially on systems with multiple
administrators, to have a bunch of scripts lying around on the disk. Most of these scripts are prob-
ably variations on the same concept, and it’s likely that nobody knows much about any of them.
Even on a single-user system, you may write scripts to do certain tasks, and then later open a file
to see what’s in it and not remember what the script does or why you wrote it in the first place.

The way around this — as with any type of programming — is good documentation. Shell scripts
are self-contained documents, so the easiest and best way to document them is to use comments
within the scripts themselves. Most programming languages have the capability to embed com-
ments within programs, and the shells are no different.

In Unix shells, comment lines begin with a hashmark character (#). Anything that comes after the
hashmark is taken to be a comment and is not interpreted as a command. Comments that span
multiple lines must have a hashmark at the beginning of each line, as in:

Here is a comment that
spans multiple lines.

16_579940 ch13.qxd 3/21/05 6:10 PM Page 227

In addition, a hashmark can be inserted into the middle of a line, and everything to the right of it will be
considered a comment:

some_command # This is a comment explaining the command

The specific methods you use to add comments to your script are up to you. However, there are a few
practices that will help keep you out of trouble:

1. Put some basic information at the top of the script. Include the name of the script, the date,
and the overall purpose of the script. If the script is designed to accept command-line argu-
ments, add a short section on the proper syntax for arguments. Include any notes or reminders
that might shed light on anything unusual about the script.

2. Keep a change log. If you make changes to your script over time, keep a log of all the changes
you make. Add each change to the top of the change log, so that the reader can see all changes
made in reverse chronological order. When you do this, change the date at the top of the script
so that the change log and actual script are in agreement.

3. Comment each section. Most scripts will have multiple sections. Each section should get a com-
ment that explains what it does. There is no need to go into detail about how it does what it does
(you should be able to communicate that with clear and lucid programming), but the purpose of
the section should be explained in the comments.

4. Identify any data that must be added by the user. If the user of the script (whether it be you or
someone else) needs to provide material for a section of a script, add a comment explaining the
information that needs to be added and the format that that information needs to be in.

Although it’s assumed that you’ve got some experience in reading scripts, it’s useful to see good com-
menting in action (especially if you don’t add comments to your own work on a regular basis). Here is
an excerpt from the /etc/rc.d/rc.sysinit file on Red Hat Linux. This is the main script that controls
how the machine is started, but its function isn’t critical in this example. Just look at the comments.

If a SCSI tape has been detected, load the st module unconditionally
since many SCSI tapes don’t deal well with st being loaded and unloaded
if [-f /proc/scsi/scsi] && grep -q ‘Type: Sequential-Access’ \

/proc/scsi/scsi 2>/dev/null ; then
if grep -qv ‘ 9 st’ /proc/devices ; then

if [-n “$USEMODULES”] ; then
Try to load the module. If it fails, ignore it...
insmod -p st >/dev/null 2>&1 && modprobe \
st >/dev/null 2>&1

fi
fi

fi

Load usb storage here, to match most other things
if [-n “$needusbstorage”]; then

modprobe usb-storage >/dev/null 2>&1
fi

If they asked for ide-scsi, load it

228

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 228

if grep -q “ide-scsi” /proc/cmdline ; then
modprobe ide-cd >/dev/null 2>&1
modprobe ide-scsi >/dev/null 2>&1

fi

Generate a header that defines the boot kernel.
/sbin/mkkerneldoth

Adjust symlinks as necessary in /boot to keep system services from
spewing messages about mismatched System maps and so on.
if [-L /boot/System.map -a -r /boot/System.map-`uname -r`] ; then

ln -s -f System.map-`uname -r` /boot/System.map
fi
if [! -e /boot/System.map -a -r /boot/System.map-`uname -r`] ; then

ln -s -f System.map-`uname -r` /boot/System.map
fi

Now that we have all of our basic modules loaded and the kernel going,
let’s dump the syslog ring somewhere so we can find it later
dmesg > /var/log/dmesg
sleep 1
kill -TERM `/sbin/pidof getkey` >/dev/null 2>&1
} &
if [“$PROMPT” != “no”]; then

/sbin/getkey i && touch /var/run/confirm
fi
wait

Notice that the comments before each section of code explain what each section does. Even if you have
never run a Linux machine before, or you’ve never looked at initialization scripts, you should be able to
follow this script’s function by reading the comments. Consider your own scripts or programs. Could
another programmer chosen at random understand your work and its purpose without actually running
the program? If not, you may want to add more comments to make things clear.

A word of warning: You will be tempted at many turns to neglect comments. It may seem easy to skip
them. After all, you might think, “I’m the only one who’s going to use this, and I know what it does.”
This almost always turns out to be false, and you’ll eventually find yourself going back over a script
line by line to find a particular section, or to piece together the exact function of a particular block of
code. Spending a few minutes commenting as you work on your script will save you lots of time and
confusion down the road.

Getting Down to It
As mentioned at the beginning of this chapter, shell programs are essentially lists of commands that are
executed sequentially. For example, you could write a basic script containing the commands:

pwd
ls

229

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 229

When you run this script, you’d get a report of the current working directory and its contents. Such a
script may not be particularly useful, but you get the basic idea. The entire world of shell scripting
begins with that simple concept.

Shell scripts have several required constructs that tell the shell environment what to do and when to do
it. This section of the chapter introduces these constructs and shows you how to use them.

Invoking the Shell
Before you add anything else to your script, you need to alert the system that a shell script is being
started. This is done using the shebang construct. For example,

#!/bin/bash

tells the system that the commands that follow are to be executed by the bash shell.

It’s called a shebang because the # symbol is called a hash, and the ! symbol is called a bang. Unix pro-
gramming is filled with idiosyncratic terms like these.

To create a script containing these commands, you put the shebang line first and then add the commands:

#!/bin/bash
pwd
ls

Now, a script this simple doesn’t need much in the way of comments, but this example does it anyway,
so that it follows good practice:

/home/joe/dirinfo
12/7/04
A really stupid script to give some basic info
about the current directory

#!/bin/bash
pwd
ls

In a nutshell, that’s all there really is to scripting. All that remains is to save the file with the proper filename
(in this case /home/joe/dirinfo, but any descriptive filename will work), and to make it executable. Once
that’s done, you can run the script merely by giving its filename at the command prompt.

Of course, if your home directory isn’t part of your PATH environment variable’s value, you’ll have to
either add it or invoke the program by using its full path name.

Of course, most scripts are more complex than this one. The shell is, after all, a real programming language,
complete with variables, control structures, and so forth. No matter how complicated a script gets, however,
it is still just a list of commands executed sequentially. If you get into trouble, you can usually keep your
head if you just remember that.

It’s good practice to store your own scripts in a separate directory so you can find them easily. Consider
creating a /bin subdirectory in your home directory to use for script storage.

230

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 230

Variables
Variables in Unix operate in much the same way as variables in other programming languages. As you
learned in Chapter 5, environment variable values can be assigned very simply, using the assignment
operator (=) as in:

EDITOR=”vi”

In this example, the variable named EDITOR is assigned the value vi. You can access the value of a vari-
able by putting a dollar sign in front of the variable name:

echo $EDITOR

If typed at the command line, this command would output vi.

In the bash shell (which is what’s being used in this chapter), variables are considered to be text strings
by default. This can cause some problems for programmers new to the shell, who expect to be able to do
mathematical calculations within shell programs.

It is possible to do math in bash, but it requires some extra work. You’ll learn how to do that later in this
chapter.

In bash, if you create a variable with the command VAR=”1”, the value of VAR is the text character 1,
rather than the numerical value 1. In other words, the variable’s value is considered to be the textual rep-
resentation of the number 1, rather than the numerical value. If you were to write the following code block

VAR=1
VAR=$VAR+1
echo $VAR

the output would be the text string 1+1 rather than the number 2.

Under some shells (bash versions above 2.0, for example), it’s possible to declare variable types. Because
simpler shells such as the regular Bourne Shell and its clone ash lack this capability, that function isn’t
included in this chapter. If you’d like to learn more about declaring variable types, see the bash 2 man-
ual at www.gnu.org/software/bash/manual/bash.html

A variable’s name, if preceded by the dollar sign, can be substituted into an expression, and the variable
will be executed when the script is run. For example,

PERSON=”Fred”
echo “Hello, $PERSON”

would produce the following output:

Hello, Fred

By convention, Unix variables are written in capital letters. This isn’t required, but it does make it easy
to find them in scripts. Variables can be named anything and can use letters, numbers, and certain sym-
bols. However, there are certain special variables (discussed a little later in this chapter) that use num-
bers and nonalphanumerics in their names. As a rule, it’s best to stick with alphanumerics and to keep
numerals at the end of the variable’s name. For example, VARIABLE3 would be okay, but 3VARIABLE
might get you into trouble.

231

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 231

Reading Input from the Keyboard
In addition to assigning a variable within a script, you can assign a variable by reading its value from
the keyboard. This is particularly useful when you want your script to respond differently depending on
the input from a user or another command’s output.

For example, you might write the simple script:

echo “What is your name?”
read PERSON
echo “Hello, $PERSON”

In this example, the read command takes the input from the keyboard and assigns it as the value of the
variable PERSON.

Special Variables
Earlier, you were warned about using certain nonalphanumeric characters in your variable names. This
is because those characters are used in the names of special Unix variables. These variables are reserved
for specific functions. For example, the $ character represents the process ID number, or PID, of the cur-
rent shell. (The system uses PID numbers to keep track of running programs.)

If you were to type

echo $?

at a shell prompt, you’d get the exit status of the last command as the output. The following table shows
a number of special variables that you can use in your bash scripts.

Variable Function

? The previous command’s exit status.

$ The PID of the current shell process.

- Options invoked at start-up of the current shell.

! The PID of the last command that was run in the background.

0 The filename of the current script.

1-9 The first through ninth command-line arguments given when the current script
was invoked: $1 is the value of the first command-line argument, $2 the value of
the second, and so forth.

_ The last argument given to the most recently invoked command before this one.

Exit Status
The ? variable represents the exit status of the previous command. Exit status is a numerical value
returned by every command upon its completion. As a rule, most commands return an exit status of 0 if
they were successful, and 1 if they were unsuccessful.

232

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 232

Some commands return additional exit statuses for particular reasons. For example, some commands
differentiate between kinds of errors and will return various exit values depending on the specific type
of failure. For most practical purposes, though, you can interpret 0 and 1 to mean success and failure (or
true and false), respectively.

Flow Control
Sure, variables and other required programming constructs are interesting, but on the face of it, they may
not seem to be particularly useful. One of the main reasons for variables in a shell script, however, is that
they permit flow control. Flow control is crucial because it allows the program to evaluate conditions and
take actions contingent on those conditions. In short, flow control allows programs to make decisions.

Flow control can generally be broken down into two types: conditional and iterative. Both types describe how
scripts set conditions and how the scripts react when the given conditions are met or not met. The difference
between the two types is more obvious once you begin to write code that involves them, because each type
uses unique commands to perform their tasks.

Conditional Flow Control
Conditional flow control, as its name implies, is concerned with whether certain conditions are met. Conditional
constructs enable the programmer to mark a section of code as being contingent upon a certain stipulation
being met. In other words, that section of code will be executed only if the specified condition is met. If the
condition is not met, the code will be skipped.

The if-then Statement
The heart of conditional flow control is the if-then statement. In general terms, an if-then statement
looks like this:

if some_condition
then

something happens
fi

The “something happens” part can be any block of code, from a single statement to a huge amount of
code with a great deal of complexity.

As in many other programming languages, the code that is enclosed within the conditional construct is
indented for ease of reading. The if-then block is terminated with the word fi, which is just the word
if spelled backward.

Here is a short script that demonstrates the usage of an if-then statement:

#!/bin/bash

echo “Guess the secret color”

read COLOR

233

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 233

if [$COLOR=”purple”]
then

echo “You are correct.”
fi

The line “You are correct.” will only be output if the word guessed by the user is “purple”.

Such constructs can quickly become quite complex. You can specify multiple conditions by adding an
else clause to the if-then construct, as in this example:

#!/bin/bash

echo “Guess the secret color”

read COLOR
if [$COLOR=”purple”]
then

echo “You are correct.”
else

echo “Your guess was incorrect.”

fi

In this example, the command enclosed inside the else clause will be executed if the condition in the
original if clause was not met.

In addition, you can use an elif clause to specify a second condition:

#!/bin/bash

echo “Guess the secret color”

read COLOR
if [$COLOR=”purple”]
then

echo “You are correct.”
elif [$COLOR=”blue”]

echo “You’re close.”
else

echo “Your guess was incorrect.”

fi

You can add as many elif clauses as you want. They are particularly useful for finely shaded responses
from the script, or when you know that there are a limited number of possible input values, each of
which requires a particular response.

The test Command
The test command is used to evaluate conditions. You’ll notice that the preceding examples include
square brackets around the conditions to be evaluated. The square brackets are syntactically equal to the
test command. For example, the preceding script could have been written:

if (test $COLOR=”purple”)

234

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 234

This concept is important because the test command has a number of options that can be used to eval-
uate all sorts of conditions, not just simple equality. For example, use test to see whether a particular
file exists:

if (test -e filename)

In this case, the test command would return a value of true, or 0, if the file exists, and false, or 1, if it
doesn’t.

You can get the same effect by using square brackets:

if [-e filename]

The following table shows other options you can use with test or with square brackets:

Option Test Condition

-d The specified file exists and is a directory.

-e The specified file exists.

-f The specified file exists and is a regular file (not a directory or other special file type).

-G The file owner’s group ID matches the file’s ID.

-nt The file is newer than another specified file (takes the syntax file1 -nt file2).

-ot The file is older than another specified file (takes the syntax file1 -ot file2).

-O The user issuing the command is the file’s owner.

-r The user issuing the command has read permission for the file.

-s The specified file exists and is not empty.

-w The user issuing the command has write permission for the file.

-x The user issuing the command has execute permission for the file.

With all these options, the command will return a value of either 1 or 0, depending on whether the
implied statement is true or false.

Comparison Operators
Conditional flow control also enables you to make other kinds of comparisons. For example, to specify a
condition where inequality rather than equality is desired, you could negate the equality by putting an
exclamation point in front of it:

if [$COLOR != “purple”]

This condition would return true for any string other than purple. Comparison operators, shown in the
following table, work in the same way that they do in simple arithmetic.

235

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 235

Operator Example Test Condition

= string a = string b Text string a is the same as text string b.

!= string a != string b Text string a is not the same as text string b.

> string a > string b Text string a is greater than text string b.

< string a < string b Text string a is lesser than text string b.

You might wonder how a text string can have a greater or lesser value than another text string, because
letters don’t normally have numerical values. In this case, however, they do have a value. Textual com-
parison is strictly alphabetical: a is greater than b, b is greater than c, and so forth. Thus, a string begin-
ning with c, as in “cat,” is greater than the string “dog.”

Doing Math in the Shell
As mentioned earlier, variables in the shell are considered to be text strings by
default. If you have assigned the value 1 to a variable, the variable holds the value
of the textual character 1, and not the numerical value 1. This is a difficult distinction
to grasp, and one that has led more than one novice shell programmer into frustra-
tion. As you might expect, this makes it more difficult to do math in the shell. For
example, consider this block of code:

MYVAR=1
MYVAR=$MYVAR+1
print $MYVAR

The output of this code would be 1+1, rather than 2.

Fortunately, there is a workaround. The expr command allows you to do simple
arithmetic operations in the shell. With expr, you can rewrite the above sequence as:

MYVAR=1
MYVAR=`expr $MYVAR+1`
print $MYVAR

The expr command forces the text string 1 to be interpreted as the numerical value
1, and your code fragment now returns the output 2. You can use the following oper-
ators to do arithmetic operations:

❑ + addition

❑ - subtraction

❑ * multiplication

❑ / division

The expr command has several other functions. See the command documentation
for details.

236

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 236

Multiple Conditions
Conditional flow control allows you to require that multiple conditions be met before the script performs
a given function. There are several logical operators that can be used to enforce these multiple conditional
requirements. Suppose you want to meet two conditions before proceeding. You could do this:

if [condition1]
then

if [condition2]
then

some action
fi

fi

Or you could simplify it by using a logical and operator (&&):

if [condition1 && condition2]
then

some action
fi

There is also a logical or operator (||):

if [condition1 || condition2]
then

some action
fi

which is equivalent to:

if [condition1]
then

some action
elif [condition2]
then

the same action
fi

You may have noticed that these examples use indentation to show the various actions in a particular
statement. This indentation, called nesting, is a typographical convention that makes it easier for
humans to read code intended for machines. Although your scripts will function equally well without
nesting, it’s better for your sanity to develop the habit.

The case Statement
In addition to the if-then statement, conditional flow control uses the case statement. This is a type of
conditional flow control that allows the programmer to create a list of alternatives that can be reacted to
accordingly. The effect is much the same as an if-then statement with a number of elif clauses, but
the results are somewhat more elegant. Here’s the general format:

case expression in
pattern1)

237

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 237

action1
;;
pattern2)

action2
;;
pattern3)

action3
;;

esac

As with if, the case statement is concluded with esac, which is just the word case spelled backward.
Note also that each option’s section is concluded with the double semicolon (;;).

case statements are great for evaluating command-line arguments. Take a look at this script excerpt:

See how we were called.
case “$1” in

start)
Start daemons.
action $”Starting NFS services: “ /usr/sbin/exportfs -r
echo -n $”Starting NFS quotas: “
daemon rpc.rquotad
echo
echo -n $”Starting NFS mountd: “
daemon rpc.mountd $RPCMOUNTDOPTS
echo
echo -n $”Starting NFS daemon: “
daemon rpc.nfsd $RPCNFSDCOUNT
echo
touch /var/lock/subsys/nfs
;;

stop)
Stop daemons.
echo -n $”Shutting down NFS mountd: “
killproc rpc.mountd
echo
echo -n $”Shutting down NFS daemon: “
killproc nfsd
echo
action $”Shutting down NFS services: “ /usr/sbin/exportfs -au
echo -n $”Shutting down NFS quotas: “
killproc rpc.rquotad
echo
rm -f /var/lock/subsys/nfs
;;

status)
status rpc.mountd
status nfsd
status rpc.rquotad
;;

restart)
echo -n $”Restarting NFS services: “
echo -n $”rpc.mountd “
killproc rpc.mountd

238

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 238

daemon rpc.mountd $RPCMOUNTDOPTS
/usr/sbin/exportfs -r
touch /var/lock/subsys/nfs
echo
;;

reload)
/usr/sbin/exportfs -r
touch /var/lock/subsys/nfs
;;

probe)
if [! -f /var/lock/subsys/nfs] ; then

echo start; exit 0
fi
/sbin/pidof rpc.mountd >/dev/null 2>&1; MOUNTD=”$?”
/sbin/pidof nfsd >/dev/null 2>&1; NFSD=”$?”
if [$MOUNTD = 1 -o $NFSD = 1] ; then

echo restart; exit 0
fi
if [/etc/exports -nt /var/lock/subsys/nfs] ; then

echo reload; exit 0
fi
;;

*)
echo $”Usage: $0 {start|stop|status|restart|reload}”
exit 1

esac

This sample is taken from the /etc/rc.d/init.d/nfs script on Red Hat Linux. It is the script that
controls the NFS (Network File System) service.

Remember that the special variable $1 represents the first command-line argument. The script gives seven
possible options: start, stop, status, restart, reload, probe and *. The asterisk option will match
anything. It is put last to catch anything that isn’t one of the preceding options. If, for example, you called
the script with the argument flerbnert, the script would simply print a message advising you of the
allowed arguments, and then quit.

Iterative Flow Control
There are also a number of control structures that are iterative in nature. That is, they are designed so that
a block of code will repeat itself, or iterate, until a certain condition is met.

The careful reader may argue that this is also a conditional situation. The important feature is the repetitive
nature of these constructs.

The while Statement
The while statement causes a block of code to repeat as long as a certain condition is met. For example,
consider the following:

#!/bin/bash

echo “Guess the secret color: red, blue, yellow, purple, or orange \n”

239

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 239

read COLOR

while [$COLOR != “purple”]
do

echo “Incorrect. Guess again. \n”
read $COLOR

done

echo “Correct.”

In this example, the code between the do and the done will repeat as long as the value of COLOR is not purple.

The until Statement
The condition in the until statement is the opposite of that in the while statement. For example, you
could rewrite the previous example this way:

#!/bin/bash

echo “Guess the secret color: red, blue, yellow, purple, or orange \n”
read COLOR

until [$COLOR = “purple”]
do

echo “Incorrect. Guess again. \n”
read $COLOR

done

echo “Correct.”

Choosing a Shell for Scripting
You’ve got a number of options when it comes to choosing a shell for scripting. To a certain extent, the
decision is purely one of personal preference. However, there are some important considerations to bear
in mind:

1. Almost all Unix systems have their control scripts written in Bourne or bash. That in itself is a
good reason to learn how to program in those two shells. The ability to read and, if necessary,
modify or write new control scripts is very important if you are destined to spend any time run-
ning a Unix system.

2. The bash shell incorporates most of the best features of the Bourne, Korn, and C shells.

3. Many Unix administrators think the C shell is less than ideal for heavy-duty use. The idea was a
good one: make a shell that used a C-like grammar. In theory, this ought to make it easy for C
programmers to get up to speed on shell scripting. The problem is in the execution. The C shell
is rife with bugs and bad design. Indeed, there is even a document available on the Web that
goes into detail about why the C shell should never be used for programming:
www.faqs.org/faqs/unix-faq/shell/csh-whynot/.

240

Chapter 13

16_579940 ch13.qxd 3/21/05 6:10 PM Page 240

4. Other shells, such as zsh, Plan9 (rc), and so forth may be able to accomplish a certain task easier or
better, but they are not widely installed on many systems. This means that you may have trouble if
you need to switch systems, or if you want to share your scripts with others.

5. Most Unix people use the Bourne or bash shells more than any other. It’s as much a matter of
convention as anything else, but if you want to speak the lingua franca of Unix people, Bourne
and bash are where it’s at.

Summary
Shell scripts are an excellent way to automate strings of Unix shell commands. Scripts can take input
from the keyboard (interactive with a user) or from output of other commands. Every script needs to
have several basic components:

❑ Invocation of a specific shell environment

❑ Variables and their associated values

❑ A source of input

There are two main ways in which a shell script can use external input to modify its action: conditional
flow control and iterative flow control. Several basic programming constructs can be used to manage
script flow control:

❑ if-then statements

❑ the test command

❑ case statements

❑ while statements

❑ until statements

Exercises
1. Using if statements, write a script named filescript.sh that will:

a. Take an argument from the command line. This argument should be a directory path. If
no argument is given, the program will use the current directory as the default.

b. List all text files in that directory (files whose names contain the suffix .txt).

c. Along with listing the filenames, give the user the option to choose the file’s size, per-
missions, owner, or group, or “all of the above” information to be displayed. Do this
interactively.

2. Write the same program using case statements instead of if statements.

Be sure to comment appropriately.

Your scripts may vary from the solutions provided, but as long as they work, they’re correct.

241

Basic Shell Scripting

16_579940 ch13.qxd 3/21/05 6:10 PM Page 241

16_579940 ch13.qxd 3/21/05 6:10 PM Page 242

14
Advanced Shell Scripting

Chapter 13 has given you a foundation in the basic elements of shell scripting. At the moment,
though, some of you may not be too impressed with what you can do with shell scripts. This chapter
may change that! It discusses a whole range of more advanced script capabilities, which will make
shell scripting a far more flexible and powerful tool in the Unix programmer’s kit.

Taking a quick look back, you have learned how to choose the shell most appropriate to your needs,
pass variables to your scripts, and dabble in a bit of flow control. This chapter builds on that knowl-
edge, presenting a host of new operators, concepts, and functions, which can be used to in a wide
variety of circumstances. It explores how to write and maintain secure scripts, as well as who should
be allowed to execute scripts and what those scripts should be allowed to do. Topics such as
restricted shells and secure wipes take the stage here.

Shells aren’t limited to simple line-by-line commands. One of their more powerful features is the
capability to create functions and libraries of functions. Consequently, this chapter looks at these
topics and examines some of the associated topics, such as variable scope, which becomes impor-
tant when dealing with more complex scripts.

Like any good programmer, you also need to think about how to debug your creations. Scripts are
no different from any other language in this respect, and the chapter finishes by examining the vari-
ous methods available to the conscientious shell scripter, including how to check for errors, what to
do and where to look, and how to add stops.

By the end of this chapter, you will have the requisite knowledge to go ahead and become a script-
ing guru. However, like many things, shell scripting takes practice and a bit of cunning to find the
best way to do things, so be sure that you spend some practice time building a wide variety of
scripts and putting together a solid library to aid you in your work.

Advanced Scripting Concepts
Where and how you use scripts is really up to you, and limited only by your imagination. This
section is intended to open your eyes to the flexibility and range of possibilities inherent in using
scripts. Of course, it can’t teach you to be exceptionally sneaky in your use of scripts, but it can
give you the information that you need to do pretty much anything you can think of.

17_579940 ch14.qxd 3/21/05 6:11 PM Page 243

Scripts can be used to take input from somewhere, process the information, and send the results some-
where else — including other scripts. They have the capability to work with complex data types such as
multidimensional arrays and can make use of their environment to perform work. Need to manage pro-
cesses? That is no problem for shell scripts. Want to customize the way in which you interact with your
command line or automate file-handling tasks? Think shell scripts!

You should be getting the feeling that shell scripts are pretty useful things. You’d be right — pretty much
anything you don’t want to do by hand over and over again is a good candidate for a shell script. With
that said, there is still a lot of learning ahead of you, so it’s time to get moving.

Input and Output Redirection
Why would you want to redirect input or output? There are actually quite a few reasons. What if, for
example, you were running a script and wanted to save its output to a file, or better yet, what if you
wanted the results of a program sent to another program? In one form or another, you’ll need to redirect
information at some stage, so learning how this is done is definitely worthwhile.

STDIN, STDOUT, and STDERR
Every time you open up a shell, Unix opens up three files for use by your program:

❑ STDIN (standard in) — This is generally your terminal’s keyboard.

❑ STDOUT (standard out) — This is generally your terminal’s monitor.

❑ STERR (standard error) — This also generally points to your terminal’s monitor.

The important thing to remember here is that, by default, input comes from your keyboard and is
printed to your screen. While this is the way most interaction is achieved, it is by no means the only way
in which programs and files can interact. Redirection often involves associating a file with one of the
standard input or output (IO) files and sending the desired information to the required file. (A few other
ways to redirect IO are examined a little later.)

Redirection is pretty simple; Unix provides you with a few simple operators that handle the associations
for you.

Redirection Operators
To redirect information as required, you are provided with the following operators.

Operator Action

> Redirects STDOUT to a file

< Redirects STDIN to a file

>> Appends STDOUT to a file.

| Takes output from one program, or process, and sends it to another

<< delimiter Associates the current input stream with STDIN until the specified
delimiter is reached

244

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 244

The first two operators are pretty simple to use. For example, if you wanted to redirect output that
would usually go to the screen (STDOUT), you could say something like this:

$ ls > fileList

The ls command usually prints directly to the screen, but in this example the output is redirected to
fileList. Of course, you might not want fileList to be written over every time you send output to it.
In that case, you could use >> to seek to the end of the target file and append the results there:

$ ls \some\other\directory >> fileList

Sometimes you will want to send output from one process directly to another process. To do so, use the
pipe (|) operator like this:

$ ls | wc

In this example, the STDOUT of ls is sent directly to the STDIN of wc utility, which dutifully prints out its
results to the screen (because its output isn’t redirected elsewhere).

The final method of redirection examined here is << delimiter, which is used in a special type of docu-
ment called a HERE file. Basically, this uses redirection to read from the given input until the delimiter is
reached. One simple use of this would be to print multiple lines of output to the screen without using
echo over and over:

Cat <<END
The cat
Sat on the
Mat.
END

The type of processing you can perform on a HERE document is really up to you, so play around with all
of the redirection operators to get the hang of it.

One thing of interest before moving on is that the use of the > operator has a few modifier flags, which
can be used to alter its behavior. For example, using > with & causes both STDOUT and STDERR to be redi-
rected, as in the following:

$ ls >& fileList

In this case, any error messages would not print to the screen but would be sent to fileList.

Using >! forces file creation in append mode, or overwriting an existing file in normal mode, while
using >@ opens a file in binary mode instead of text mode.

You’ll see more redirection in action in an example a little later on.

245

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 245

Command Substitution: Back Ticks and Brace Expansion
It’s often quite important to capture the results of some command in a variable for use by your shell
script. Back ticks are really useful for this sort of thing because they provide you with an inline method
for executing a command and retrieving the results before the rest of your script executes.

For example, it is conceivable that you may wish to capture the number of lines in a given file so that your
shell can then use this to determine a certain action. Using back ticks makes this a pretty simple task:

Lines=`wc -l textFile`

The variable Lines now contains the number of lines in the textFile file and can be used elsewhere in
the shell script as needed. Shells also expand the contents of double-quoted strings, so double quotation
marks also play a role in command substitution. Of particular interest here is brace expansion, which
uses the format: $(command), where command is any valid Unix command.

Accordingly, you could have achieved the same result as the preceding line by saying:

Lines=”$(wc -l textFile)”

Remember to use quotation marks to help clarify what you mean in your commands. Use single quota-
tion marks if you don’t want any type of expansion to take place — in other words, you are enclosing a
literal string. Otherwise, use double quotation marks if you do want variables to be substituted, and
commands to be executed.

It’s useful to note that the $(command) format supports nesting without having to escape the $(and)
characters, so you can perform several operations in one go if necessary. Like this:

$ echo “Next year will be 20$(expr $(date +%y) + 1).”

Many people believe that nesting can get too complicated and can become confusing. Like anything,
make sure you use it sensibly and you should be just fine. Let’s move on.

Using Environment and Shell Variables
The variables you have seen so far are local variables, and available only to the shell to which they have
been passed. Naturally, you don’t want to be limited to running your scripts in isolation from the rest of
your system, so there is often a need for scripts to interact with the environment in which they are run-
ning. To do this, they need to have access to environment and shell variables, which can be set by the
user or are already available upon startup of the shell.

Environment variables are accessible not only to the shell itself but to any processes that it spawns. For
example, if one shell creates a subshell, then any environment variables available to the parent shell are
also available for use by the child shell. If you want the PATH environment variable to contain the /bin
directory, you would say something like this:

export PATH=/bin

246

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 246

The export command is used to modify the shell environment. Without any options, it displays many
of the shell environment variables. Checking for a man page for mount gives you the man page for your
current shell.

For the remainder of your shell’s life, and any and all child shells or processes started by the shell, the
PATH variable will contain the /bin directory. You can export any type of variable to your environment
like this:

export name=value

To look at which shell variables have been set for your environment, use the set command:

$ set

Depending on your system and which shell you are using, you will get differing results.

Shell variables are not set by the user but are set up when the shell initializes. The following table pro-
vides examples of the types of variables set up by the shell.

Variable Contains

CDPATH Path of shortcuts for cd (like PATH)

COLUMNS Numbers of columns on the display

EDITOR Path for editor

HISTSIZE Number of commands in command history (default 500)

There are an almost infinite number of variables that you can set for your shell. In the bash shell, you can
use the set command to see a list of all the current shell variables that are currently set. As you become
more familiar with the shell and its variables, you can alter them to suit your needs.

Shell Functions
What are shell functions all about, and why do you need them? The simple answer is that for anything
but the simplest script, using functions is a great way to keep your code structured. Functions enable
you to break down the overall functionality of a script into smaller, logical subsections, which can then
be called upon to perform their individual task when it is needed.

Using functions to perform repetitive tasks is an excellent way to create code reuse. Code reuse is an
important part of modern object-oriented programming principles, and with good reason — it means
that you don’t have to write out the same bit of functionality over and over, which makes your life as a
shell programmer a whole lot easier. It also makes your scripts a lot easier to maintain because all the
functionality is encapsulated within (hopefully) clearly named functions.

247

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 247

It may help to think of a function as an embedded script within your main shell script. After all, there is
very little difference between the two — a function simply executes within the context of its containing
shell without creating a new process. A new shell script, of course, always starts its own process.

To declare a function, simply use the following statement:

name () { commands; }

The name of your function is name, and that’s what you will use to call it from elsewhere in your scripts.
The function name must be followed by parentheses, which are followed by a list of commands enclosed
within braces.

Because functions can be used to perform pretty much any type of action that you can think of, it is often
necessary to pass information to them for processing. The following “Try It Out” section takes a quick
look at a function that takes some parameters.

Try It Out Pass Parameters to a Function
1. Type the following code and save the file as ~/bin/func.sh (if you do not have a bin directory

in your home directory, create one with the mkdir command discussed in Chapter 4):

#!/bin/bash

func
A simple function

repeat() {
echo -n “I don’t know $1 $2 “

}

repeat Your Name

2. Make the script executable. (See the section on chmod in Chapter 4 for details).

chmod 755 ~/bin/func.sh

3. At the command line, run the script:

$ ~/bin//func.sh

The following should print to the screen:

I don’t know Your Name

How It Works
The function repeat was declared with one echo command in the commands list. Once it has been
declared, you can use the function from anywhere in the script. In this case, it was called it directly after
the declaration, passing it two parameters: Your and Name:

repeat Your Name

248

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 248

Just as you saw in Chapter 13, a function can use special variables to access parameters. This is about as
basic a function as you can get, and there is certainly a lot more you can do here. A key point here,
though, is that a function must be declared before it is referenced within a script.

Returning Values
You’ll often want a function to return some sort of result that can be used by the rest of your script. As
you already know, scripts use exit to return a value, but for functions you use the return command.
Because functions can be used in conditional statements, they are perfect for determining what actions to
take, based on their return values. Alternatively, you can use return values to tell you whether errors
have occurred or incorrect information has been passed to your function.

To explicitly set the exit status of a function (by default it is the status of the last command), use the fol-
lowing statement:

return code

code can be anything you choose here, but obviously you should choose something that is meaningful
or useful in the context of your script as a whole. For example, if you are using your function to deter-
mine whether to execute an if block, you should return 0 or 1 to keep things clear.

Nested Functions and Recursion
One of the more interesting features of functions is that they can call themselves as well as call other
functions. A function that calls itself is known as a recursive function, and can be used in a variety of situ-
ations that can be resolved by repeating an action over and over. A good example of this is finding the
sums or factorials of numbers passed to a function.

For more complex situations, it is often necessary to use the functionality contained in one function from
another, which is called nesting functions. The “Try It Out” section that follows shows you a simple
example to demonstrate this.

Try It Out Use Nested Functions
1. Type the following script, and save it as ~/bin/nested.sh:

#!/bin/bash

nested
Calling one function from another

number_one () {
echo “This is the first function speaking...”
number_two

}

number_two () {
echo “This is now the second function speaking...”

}

number_one

249

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 249

2. Make the script executable.

chmod 755 nested.sh

3. Run the script from the command line using the following command:

$ ~/bin/nested.sh

Two messages should be echoing to your screen:

This is the first function speaking...
This is now the second function speaking...

How It Works
Run through the order of execution to get an idea of what happened here:

1. Function number_one is called.

2. number_one echoes its message to the screen.

3. number_one calls function number_two.

4. number_two echoes its message to the screen and exits.

Nested functions (sometimes known as chaining) are very powerful tools in the shell scripter’s armory.
They enable you to break large problems into smaller, more easily understood chunks, and then use
those modular pieces of code to produce a neat and elegant solution.

Are there any downsides to scripting this way? Well, recursion is pretty resource-intensive and can lead
to slow execution, so be wary of that. There is, however, one other thing you should really pay close
attention to when working with functions, and that’s scope.

Scope
The concept of scope is really not too hard to grasp, but if you’re like me, you need to be on your guard
wherever the specter of scope raises its head. Forgetting the effects of scope can lead to errant and unex-
pected results for the unsuspecting scripter.

There are two types of scope — global and local. If a variable has global scope, it means that it is accessi-
ble from anywhere within a script. This is not true for variables with local scope, which are accessible
only in the block in which they were declared.

To get a better feel for how scope works, tackle the short example in the following “Try It Out.”

Try It Out Work with Scope
1. Type the following script into a file and name it ~/bin/scope.sh:

#!/bin/bash

scope

250

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 250

dealing with local and global variables

scope ()
{

local lclVariable=1
gblVariable=2
echo “lclVariable in function = $lclVariable”
echo “gblVariable in function = $gblVariable”

}

scope

We now test the two variables outside the function block to see what happens

echo “lclVariable outside function = $lclVariable”
echo “gblVariable outside function = $gblVariable”

exit 0

2. Make the script executable.

chmod 755 ~/bin/scope.sh

3. Type the following in the command line to run the script:

$ ~/bin/scope.sh

You should receive the following output:

lclVariable in function = 1
gblVariable in function = 2
lclVariable outside function =
gblVariable outside function = 2

How It Works
The meat of this example occurs in the scope function. To make a variable local, you use the local keyword:

local lclVariable=1

This line sets the value of the local variable lclVariable to 1 and gives it local scope only. You then echo
out the values of each of the variables within the function when you call it directly after the declaration.

This gives you the first two lines of your output, which is what you expect:

lclVariable in function = 1
gblVariable in function = 2

Finally, you try to echo out the values of the two variables declared within the scope function from the
shell. As you can see, only the variable with global scope is visible to the shell — the lclVariable does
not exist in the context of the shell, only that of the function.

251

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 251

Finally, it is difficult to talk about functions without talking about libraries, which is the subject of the
next section.

Function Libraries
You might find that you have a bunch of functions that you use quite often. Having to place them into
every script you write could become quite tedious after a while. This is where function libraries come in
handy.

One of the easiest things to do is place whatever functions you need into a file and then include that file
at the start of your script. That makes whatever functions are contained in the file available for use as if
you had written them in. To do this, simply use the period notation. Say that you had a modified version
of the scope file (it doesn’t need to be executable, a simple text file will do) like this:

scope ()
{

local lclVariable=1
gblVariable=2
echo “lclVariable in function = $lclVariable”
echo “gblVariable in function = $gblVariable”

}

another_scope_function()
{

echo “This is another_scope_function...”
}

yet_another_function()
{

echo “This is yet_another_function...”
}

You could gain access to all these functions by doing the following:

#!/bin/bash

. ~/lib/scope # Define the path you need to access the function library file

scope
another_scope_function
yet_another_function

exit 0

This would output the two echo lines to your screen:

This is another_scope_function...
This is yet_another_function...

As you can see, it is pretty easy to include a library of functions like this. It is advisable to put them all
into a ~/lib/ directory to avoid clutter in your home directory.

252

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 252

getopts
One other item of interest is getopts, a shell built-in (which means it is implemented by the shell inter-
nally) that is used to check whether command-line options passed to the script are valid. You could
think of it as a command-line parser. The syntax for getopts is as follows:

getopts opstring name

In this case, opstring contains the list of characters that are to be recognized as valid options. If one of
the characters is followed by a colon, it means that that option should have an argument, separated by a
space. name is a shell variable, which is used to store the next option in the list.

getopts uses two variables to help it keep track of everything:

❑ OPTIND— Stores the index of the next argument to be processed.

❑ OPTARG— If an argument is required, it is placed in here by getopts.

Most often, getopts is used in some sort of loop to go over the options and arguments supplied to the
script. This “Try It Out” section walks you through a very brief example to see this in action.

Try It Out Use getopts
1. Create the following script and save it as ~/bin/get.sh:

#!/bin/bash

get
A script for demonstrating getopts

while getopts “xy:z:” name
do

echo “$name” $OPTIND $OPTARG
done

2. Make the script executable.

chmod 755 ~/bin/get.sh

3. Call the script from the command line, passing it a variety of parameters, like so:

$ ~/bin/get.sh -xy “one” -z “two”

You should get the following results:

x 1
y 3 one
z 5 two

How It Works
There are really only two important lines in this example. The first deals with the arguments that have
been given to getopts:

while getopts “xy:z:” name

253

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 253

From this line you can see that parameters y and z should have arguments and that name is the variable
that is going to store the next option for you.

The second important line simply prints out the various variables pertinent to getopts:

echo “$name” $OPTIND $OPTARG

Finally, you execute ~/bin/get.sh from the command line, passing it a few parameters to deal with:

$./get -xy “one” -z “two”

As expected, you received a list of name variables, printed out with the corresponding values of OPTIND
and OPTARG. In this instance, you passed arguments to both y and z and they showed up in the OPTARG
variable on the second and third lines when name contained the parameter that required an argument.

Signals and Traps
Certain process level events throw up signals, which can be useful for determining an action to take
based on what has happened to that process. For example, a user might issue a Ctrl + C command to a
process that is trying to write to a temporary file. This type of situation should be dealt with appropri-
ately lest you lose important information when your temporary files are deleted on the next reboot.

Pressing Ctrl + C sends a signal to your shell process; how you react to this is up to you. You can use the
trap command to take an action based on the type of signal you receive. To get a list of all the signals
that can be sent to your processes, type the following:

$ trap –l

The following are some of the more common signals you might encounter and want to use in your programs:

Signal Name Signal Number Description

SIGHUP 1 Issued if a process is left hanging — the terminal is dis-
connected.

SIGINT 2 Issued if the user sends an interrupt signal (Ctrl + C).

SIGQUIT 3 Issued if the user sends a quit signal (Ctrl + D).

SIGFPE 8 Issued if an illegal mathematical operation is attempted.

SIGKILL 9 If a process gets this signal it must quit immediately and
will not perform any clean-up operations (such as closing
files or removing temporary files).

Trapping these signals is quite easy, and the trap command has the following syntax:

trap command signal

command can be any valid Unix command, or even a user-defined function, and signal can be a list of
any number of signals you want to trap. Generally speaking, there are three common uses for traps:

254

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 254

removing temporary files, ignoring signals, and ignoring signals during special operations. An example
of how to use signals and traps is examined shortly. However, signals and traps can play a part in file
handling, so you should take a look at that first.

File Handling
A big necessity when it comes to dealing with scripts is the capability to work with files. Whether your
script is creating files for storing or retrieving data, working as part of a CVS application, or simply using
a temporary file to help with processing, you must be aware of how to deal with files securely and neatly.

This section discusses how shell scripts can be used to perform file-related tasks efficiently. To begin
with, you will look at how to determine whether a given file exists. This is obviously important for a
healthy, robust file-handling script. Taking things a step further, you learn how to clean up files in the
event something unforeseen happens to your scripts.

File Detection
As you may have surmised, it is quite important to be able to tell whether a file exists. Things can go
horribly wrong if you try to overwrite files that already exist, or write to files that don’t exist. Luckily,
there is a quick solution to this. You can also quite easily decide whether a file is readable or writable.
Actually, there is no need to stop there — you can test to determine pretty much anything about a file.

For example, if you want to determine whether to write to a file, you need to check whether the file
exists and is writable. To do that, use the following if statement:

if [-w writeFile]
then

echo “writeFile exists and is writable!”
fi

The test in this case is given in generic form by:

[option file]

Where option and file are determined by what you need to test for and the file you want to test. The
following table lists the most common options used.

Expression Meaning

-d file True if: file exists and is a directory.

-e file True if: file exists.

-r file True if: file exists and is readable.

-s file True if: file exists and size is greater than zero.

-w file True if: file exists and is writable.

-x file True if: file exists and is executable.

255

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 255

You can combine these tests using && (logical and) or || (logical or) to fine-tune your test even more:

if [-r writeFile && -x writeFile]
then

echo “writeFile exists, is readable, and executable!”
fi

and

if [-r writeFile || -w writeFile]
then

echo “writeFile exists and is readable or writable!”
fi

Cleaning Up Files
It is not very good practice to allow scripts to create a whole bunch of temporary files and then leave
them lying around. All sorts of information could be lost or left hanging around. For example, you may
decide that a script is taking too long to execute and it’s time to go home. What do you do?

Most often, people will hit Ctrl + C to terminate their script’s execution. If there’s no proper file handling
in place, it could lead to some sticky problems. This is where signals and traps come into the equation.
By capturing signals sent to your processes, you can call functions that will act appropriately. The fol-
lowing “Try It Out” section captures an interrupt sent by a user and uses trap to clean up a temporary
file created during the course of the script.

Try It Out Clean Up a Temporary File with trap
This example simply shows you how to remove a temporary file if a given signal is encountered.

1. Type the following code and save into a script. Name the script ~/bin/sigtrap.sh:

#!/bin/bash

sigtrap
A small script to demonstrate signal trapping

tmpFile=/tmp/sigtrap$$
cat > $tmpFile

function removeTemp() {
if [-f “$tmpFile”]
then

echo “Sorting out the temp file... “
rm -f “$tmpFile”

fi
}

trap removeTemp 1 2

exit 0

256

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 256

2. Make the script executable:

chmod 755 ~/bin/sigtrap.sh

3. Run the script at the command line with:

$ ~/bin/sigtrap.sh

You should find that the script waits for you to enter text up until you press Ctrl + D.

4. Type in some text at the command line and press Ctrl + D. Once this is done, check that the file
you created is in the tmp directory (it will be named something similar to sigtrap(procid)).

5. Now run the script again, but before you press Ctrl + D, press Ctrl + C. This time you should
receive the message “Sorting out the temp file....” If you go and check for another file with the
name similar to sigtrap(procid), you will find that it is no longer there.

How It Works
The first line creates a temporary file using the shell’s process ID, suffixed by the word sigtrap:

tmpFile=/tmp/sigtrap$$

The next line uses the cat command without any parameters. This causes the script to wait for input from
the user. You need the program to wait for a little while to give you time to send the appropriate signal:

cat > $tmpFile

Next, a function was created to remove any temporary files the script had created before exiting:

function removeTemp() {
if [-f “$tmpFile”]
then

echo “Sorting out the temp file... “
rm -f “$tmpFile”

fi
}

This is the main use of trapping. You will often want to call a specific function based on the type of signal
you receive and the type of task your script is completing.

Finally, the trap command was set to call the removeTemp() function in the event that the process
received signals 1 or 2 (the signals for the process being hung, or the user sending an interrupt, Ctrl + C):

trap removeTemp 1 2

You might find that you want to perform different operations depending on which signal is received. In that
instance, simply create several trap statements with their corresponding functions to handle execution.

Arrays
It’s often necessary, and useful, to be able to work with arrays. Shell scripts are no different from any
other scripting or programming language in that respect. Naturally, it is possible to declare and use

257

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 257

arrays using your shell’s notation. This section concentrates on the bash shell’s array notation, but what-
ever lessons you learn here apply to any shell you care to use.

Now, there are several things that you need to be able to do with arrays: declare them, populate them
with information, and manipulate the information held within them as needed. You can do all of this
from within the shell, and, as you might expect, there is generally more than one way to do things.

Declaring an Array
There are several ways to declare an array, and how you decide to do this really depends on what is the
most expedient for you at the time. It is even possible to initialize arrays using values stored in text files.
The first, and simplest, method of declaring an array looks like this:

array1[index]=value

This snippet creates and array called array1, which has a value referenced by the index number given
between the square brackets. Another way to create and populate an array is like this:

array2=(value1 value2 value3 value4)

array2 has been populated with the values value1, value2, and so on. The index numbers are auto-
matically assigned, beginning with 0. The third method of initializing an array is more or less a combina-
tion of the first two:

array3=([0]=value1 [13]=value2 [7]=value3)

Notice that when declaring values, your index numbers need not be in any particular order, nor do they
need to be in sequence — you can place them wherever you like.

How do you find out what values are in an array? You need to perform an operation called dereferencing.

Dereferencing an Array
To find out what value is held at a certain index within in array, use the curly bracket notation, like this:

${array[index]}

Pretty simple stuff! So to find out the value of array3 where the index value is 13, you would write the
following:

value=${array3[13]}
Echo “$value”

This, as you may have guessed, would print out:

value2

There is special notation that you can use to determine all the values within an array. You also can find
out how many elements an array contains. The following two lines perform these actions, respectively:

arrayelements=${array2[@]}
arraylength=${#array2[@]}

258

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 258

Using array2, which was declared in the last section, the arrayelements variable would contain the
values value1 value2 value3 value4, and the arraylength variable would contain the value 4.

Finally, you may not want to return all the elements of an array but rather a range of them. If this is the
case, use the following notation:

${array[@]:3}
${array[@]:3:2}

The first line goes to the fourth value in the array (because array indexes start from 0) and then returns
every remaining value in the array, while the second line returns only the next two values after the
fourth element.

While not strictly part of dereferencing, bash version 3 has a new notation that allows for the expansion
of indices. To find out what index values your array holds, use the following notation:

${!array[@]}

For array2, which was presented earlier, this would return: 0 1 2 3.

Removing Values from an Array
You might want to get rid of some values in your array, or even drop all the values from an array
entirely. If this is the case, you can use the unset command like this:

unset array[1]
unset array[@]

The first command removes the value at index position 1, and the second removes all values from the
array. Here’s a little exercise that shows you how to use the values of a text file to populate an array.

Try It Out Use Text File Values in Arrays
1. Type the following text and save the file as ~/tmp/sports.txt:

rugby hockey swimming
polo cricket squash
basketball baseball football

2. Now create the following script file and call it ~/bin/array.sh:

#!/bin/bash

array
A script for populating an array from a file

populated=(‘cat ~/tmp/sports.txt | tr ‘\n’ ‘ ‘’)
echo ${populated[@]}

exit 0

3. Make the script executable:

chmod 755 ~/bin/array.sh

259

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 259

4. Execute the script by typing the following at the command line:

$ ~/bin/array.sh

Your output should simply be the contents of the sports file minus the new lines:

rugby hockey swimming polo cricket squash basketball baseball football

How It Works
The money line here is:

populated=(`cat ~/tmp/sports.txt | tr ‘\n’ ‘ ‘`)

This line uses one of the array declaration notations presented earlier to declare and populate an array
called populated. The command within the parentheses pipes the results of the cat ~/tmp/sports.txt
command (which simply writes the contents of the file sports.txt to the standard output) to the tr ‘\
n’ ‘ ‘ command.

tr converts the character in the first string to those in the second string. In this case, you are removing new-
line (\n) characters and replacing them with white space so that the array can be populated properly. If you
only have one line in your file, you would simply use the cat sports command enclosed in back ticks.

Obviously, you need to ensure that the results of the command enclosed by the parentheses are correctly
formatted. Otherwise, you will get some strange results.

Now that we understand some advanced scripting techniques, you will probably want to keep the
scripts away from the prying eyes of malicious crackers. Security is a very hot topic in most information
technology departments these days and should be taken seriously. The next section will help you keep
your scripts, and subsequently your systems, secure.

Shell Security
Talking about secure shell scripting is opening a big of a can of worms. The problem with shell scripts is that
they are used to run commands that use other programs, files, or utilities. Often these other programs can
cause a security leak. Even if you have been exceptionally security conscious, it is still possible for malicious
users to thwart your intent. Having your own scripts used against you is never particularly soothing to the
ego, either.

If you are extremely concerned about security, it is probably best not to use shell scripts for anything but
the simplest tasks. Shells weren’t really designed with security in mind — they were designed to make
life easy for you. Part of making life easier is handling a lot of things behind the scenes. It is these hidden
aspects of most scripts that can harbor danger.

Where Can Attacks Come From?
A good example of how shell input can be used to modify the behavior of a script comes from changing
filenames. Your script may be dutifully searching through a list of filenames and piping them off to
another utility when it comes across one that has a special character such as a semicolon followed by a

260

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 260

shell command — perhaps the useradd command. The script may assume that you want to run the
useradd command, which creates an unwanted user account on your system. Well, it may well be that
this shell command cannot be run without increased system privileges, or cannot do anything more
malevolent than break your script, but there is the possibility that there is malicious intent.

Another point of concern is the temporary files that are often used by shell scripts. These are often held
in the /tmp directory, which is visible and useable by anyone on the system. It’s quite hard to see how
someone could do something malicious without knowing the intimate workings of your script, but it is
possible that a malicious user could remove temporary files or modify them in such a way as to produce
unwanted or unexpected results.

You also should always keep in mind the environment your script is running in (or is intended to run
in), both in terms of where you actually keep your script and in what environment it executes to ensure
that if an unauthorized user runs your script, he will not have more access than the script needs.

Taking Precautions
There are several steps you can take to help control attacks such as those mentioned in the previous sec-
tion. By adhering to some general security-related principles, you can make it a lot harder for someone
to mess around with your scripts.

You can create a secure subdirectory in the /tmp folder for use by your scripts, so that any temporary
files generated by your scripts are not modifiable by anyone else. This is not a promise of security at all,
but it does put up an extra obstacle for would-be hackers. Hackers could still replace your directory with
their own, but it would be hard to do anything more than that.

Keep your scripts in a place where they are not modifiable by all and sundry. This means that you need
to contain them in secure directory structures with the proper permissions set — in other words, don’t let
everyone have write permission on them, among other things. Further, you need to ensure that hidden
environment variables are set or are what you expect. Having modified environment variables can alter
the execution of your script before it has even begun, so set your PATH and IFS variables at the start of
your script.

Finally, you also don’t want to let scripts with elevated privileges run amok. Give scripts enough privi-
leges to perform the required task, and no more.

Next, take a look at a special type of shell that can aid you in your bid to become a secure shell scripter.

Restricted Shells
A restricted shell is exactly what its name implies — restricted. It only has enough functionality to per-
form a limited set of tasks. Obviously, this makes it a better candidate for secure programming, but you
shouldn’t assume that it is totally safe. As mentioned earlier, sometimes the security problem can come
from the programs that the shell is interacting with and not directly from the shell itself.

The following table takes a look at some of the features of restricted shells and why they have been
enforced.

261

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 261

Feature Reason

Unable to change directory with cd. Prevents users from running code from an
unsecured directory.

Unable to set some environment variables like Changing environment variables can lead
SHELL, PATH, and ENV. to unexpected results.

Unable to use IO redirection with operators such Prevents users from creating unwanted
as >, >&, <>, and so on. files.

Unable to use exec built-in to substitute processes. Any spawned processes or shells need not
run with the same level of restriction as
the parent shell.

Unable to use commands that contain slashes. Prevents possibility of using commands
to change into unauthorized directories.

Unable to disable restricted mode. This one is quite obvious—you wouldn’t
want a hacker to simply turn off restrictions!

To run a restricted shell, simply invoke it with the -r option. Alternatively, if you want to run only certain
commands in a restricted manner, you can use the set -r and set +r options. The following snippets
show this in action:

#!/bin/bash -r
This script won’t work

cd /some/other/directory
set +r

exit 0

Alternatively, you could do something like this:

#!/bin/bash
This script won’t work

cd /some/other/directory
echo “`pwd`”

set -r
cd
echo “`pwd`”
set +r

exit 0

If you run this script, notice that the cd command between the two set commands will not work
because you cannot change directory in restricted mode.

262

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 262

Another aspect of security that is of great importance is ensuring that you clean up your temporary files —
also known as wiping. You saw a basic example of this in action in the section on file handling, where you
trapped a signal from an interrupt and used it to remove a temporary file from the /tmp directory before
stopping execution.

This section covered the basics of keeping your scripts secure. While this is important to do as a normal
user, it is doubly important for system administrators to keep their scripts secure. Most system adminis-
tration scripts, as you will see in the next section, are run as the root user.

System Administration
If you ever want to be a Unix system administrator, you will need to know something about scripting.
Administrators have a wide variety of tasks that they need to perform to keep the systems and platforms
in their care in proper working order. Invariably, this involves, among other things, having to find out
information from and about the system, moderating how the system uses its resources, and setting up
and installing software and hardware.

Scripting plays an important role in this. As you have already learned in this chapter and many of the
ones before, shells provide you with all the commands and utilities you need to perform pretty much any
type of administration task. From backing up files to adding new users, anything remotely related to the
platform on which users can go about their daily lives falls under the system administrator’s purview.

One of the neat things about scripts is that they can perform any repetitive task quite well. For example,
if you work at a university as the computer lab’s administrator, you might soon become pretty sick of
adding new users each year. Writing a little script to do this for you would certainly make life a lot eas-
ier, wouldn’t it? In fact, because most students would probably have exactly the same rights, you could
probably write a script that reads in all the names from a text file and creates them as new users, all with
standard permission (or whatever you wanted).

Pretty much everything you have been doing until now falls on the list of administrator tasks. All the
commands you have looked at, all the various types of variables, utilities, and so on, all form part of the
toolkit system administrators use to fulfill their role. Most of the time you will want to access information
or perform operations on the following:

❑ The file system

❑ Logs

❑ Users

❑ Processes

❑ Resources

The information you need is often the same type of thing again and again. Many administrators use cron
(see Chapter 11, “Running Programs at Specified Times”) to run scripts each hour, day, or week to print
out whatever system information it is that they need. Because you have already seen cron in action, it
isn’t discussed in-depth here. Just know that whatever scripts you want run on a regular basis can be sent
to cron to run.

263

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 263

Please be aware that many system administrator tasks need superuser privileges. As a result, you need
to be very careful about what you decide to automate with scripts.

Gathering Information
Naturally, you want to be able to find out information from your system about how it is operating and
what is happening with users, processes, and files. You also need to keep records, or logs, of what your
system has been doing. One of the first things to do is take a look at the commands and utilities available
for retrieving information about your system.

There are, of course, a host of commands related specifically to system administration. The following
table lists some of the more common ones, and their use.

Command Use

df Provides information on the file system of a given file. If you don’t supply df
with a filename, it displays file system information for all mounted file systems.

du Gives the file system’s block usage for each file supplied as an argument. If noth-
ing is supplied, the block usage of the files in the current directory is given.

lastlog Accesses log information to print out the details of the last login. You can specify
a user to retrieve only that user’s log information.

lsdev Retrieves information about installed hardware from the /proc directory. Use it
to obtain an overview of what hardware a system is running.

lsof Displays a list of all files that are currently open. By default it displays all files
open by all processes.

ps Provides information on processes, sorted by owner and process ID.

stat Provides more detailed information on files and directories.

top Returns a list of the most /CPU-intensive processes.

vmstat Provides information on the state of your system’s virtual memory — processes,
memory, paging, block IO, traps, and CPU activity.

w Shows information, including information on processes, on all current users
unless a specific user is specified.

There are other utilities you can use to gather information, but these commands give you a good base
from which to work. Use them from within scripts to display information on a regular basis (using cron),
or on startup, enabling you to keep abreast of what is happening without having to search repetitively.

Many of these utilities have quite a few options available to customize exactly the type of information
you can gather with them. Play around with them and consult the man pages for more information. The
next section examines some of the more common system administration jobs.

264

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 264

Performing Tasks
Gathering information is only one side of the coin. You also need to maintain a system in good working
order. Unix comes with utilities to help with precisely this. The following table lists some of the more
common commands used by system administrators.

Command Use

chown, The superuser can use chown to change the ownership of a file. Otherwise,
the owner of the file can use chown to change the group ownership of a file.

chgrp Change group ownership of a file.

dump Back up files in binary format. restore can then be used to retrieve files
backed up with dump.

mke2fs Create new ext2 file systems.

mkswap Create a swap partition, which must then be enabled using swapon.

mount, umount Mount and unmount file systems on devices.

ulimit Set limits on the resources processes can consume.

useradd, userdel Add and delete users from a system.

wall Write to all terminals logged on. Administrators can use it to send system-
wide messages.

watch Execute commands repeatedly at a specified interval.

The work of a system administrator is never done. Having played around with the commands in this table and
the one before, you should be able to do quite a bit of useful system-related programming. However, there is
one topic that hasn’t been touched yet that is of vital importance to tracking and recording information—the
logs! System logging is discussed in the following chapter, so all that’s said here is that making good use of sys-
tem logs is an essential component of any system administrator’s job description.

Debugging Scripts
Like any programming or scripting language, shell scripts require some form of debugging. There are
quite a few things that can go wrong with a shell script, ranging from a simple syntax error to more com-
plex and subtle errors in logic. Unlike many fully featured languages, however, shells don’t come with a
built-in debugger, so you have to use a bit of cunning and guile to ensure that scripts behave as expected.

How you go about checking for errors really depends on the type of errors you are trying to capture. For
example, running this script will kick up an error:

#!/bin/bash

echobug
Faulty echo shell

ech “Guess the secret color” \n”

265

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 265

You should be able to see why pretty much immediately: a simple typo (ech instead of echo in that last
code line) prevents the script from running properly because there is no ech command. This type of
error is known as a syntax error, and one of the ways to search for and correct them is by using the -n
option with sh command interpreter, like this:

sh -n scriptname

This does not execute your script; it simply reads each command. Even better, use the -v option of sh
with -n to give a verbose output. Basically, this forces sh to echo out each command as it executes. This
helps you locate any errors a lot faster.

What if the error is not a syntax error but something that is just not behaving as you expect? There are a
couple of things you can try to find out what is going on in the script.

First, the -x option of sh can help. This flag echoes the result of each command run by the script to the
screen so that you can ensure that you get what you expect. Of course, for larger scripts, you may not
want to debug the entire thing at once. If this is the case, insert set -x into your script at the place
where you want to begin debugging and set +x where you want to stop debugging. To debug only the
one line of the echobug script, you would do the following:

#!/bin/bash

echobug1
Faulty echo shell

set -x
ech “Guess the secret color”
set +x

When you run this shell from the command line with the $ ~/bin/echobug1.sh command, you get
output with a preceding (+) sign. Any line prefixed with a preceding sign is a command that is run by
the shell. Everything else is a result of the shell’s processing.

$ ~/bin/echobug1.sh
+ ech Guess the secret color
~/bin/echobug1.sh: line 6: ech: command not found
+ set +x

As well as this, you could insert echo statements into your code to print out values of variables to deter-
mine whether they contain the expected values. This tactic is especially handy for determining whether
the results of commands using regular expressions are what you wanted.

Further, inserting an echo statement into flow-control structures such as if and while statements can
help determine whether your conditions are working properly. If, for example, you expect an if state-
ment’s condition to evaluate to true at least once in a script’s lifetime, and you insert this statement into
the if loop’s body:

echo “You have reached the body of the if statement ok!”

You can quite easily tell whether your script ever gets to that section of the code. If it doesn’t, you know
that the problem is either with your condition, or that the script is terminating before it gets to the if loop.

266

Chapter 14

17_579940 ch14.qxd 3/21/05 6:11 PM Page 266

Summary
This chapter introduced you to more-advanced scripting concepts, including input-output redirection.
You learned quite a bit about shell functions, including:

❑ How to pass parameters to a function

❑ How to return a value from a function to the script

❑ How nested functions can help in complex situations

❑ How to use function libraries to save yourself time and effort

Additionally, you explored the concept of scope, both global and local, and learned how to use the trap
command to respond to signals from processes and to clean up temporary files. You learned the impor-
tance of safeguarding your scripts by keeping them in secure directory structures and using restricted
shells, and you explored some other administrative tasks, such as information-gathering, utilities for
system maintenance and debugging scripts.

Exercises
1. Create a function that determines the sum of two values passed to it, and make it available to all

shells.

2. Write a script that reads information from the end of one file and appends it to another. To make
this more useful, make it read from a system log file.

3. Write a script that attempts to divide by zero. It should send an error message to the screen
before ceasing execution.

4. Write a script for a system administrator. The script should tell the administrator what day it is,
who is logged on, and what files are being used. Before exiting, the script should send a message
to all users saying that the administrator is now in the office.

267

Advanced Shell Scripting

17_579940 ch14.qxd 3/21/05 6:11 PM Page 267

17_579940 ch14.qxd 3/21/05 6:11 PM Page 268

15
System Logging

As you know by now, system administration is quite an expansive concept, basically covering all
aspects of keeping things running. It involves responsibilities such as installing software, keeping
software up-to-date, managing disk space, controlling access to the system, and managing user
accounts. One of the most important (and oftentimes tedious) administrative jobs is managing log
files. Because your system is involved in a multitude of tasks that are noninteractive and invisible
to the user, logs are your eyes and ears to what’s going on within the system. You need to monitor
the log files to have any sense of what the computer is doing at any given time, and it is the log
files that you consult whenever things are not going the way they should be.

Unix systems have a very flexible and powerful logging system, which enables you to record almost
anything you can imagine and then manipulate the logs to retrieve the information you require. This
chapter provides a thorough explanation of how logging works in Unix, how to make it keep track of
the things you need to know, and how to automate a good bit of the process so you do not have to
spend all of your time reading log files.

Log Files
Log files are extremely important to system administration because they are the voice of the system—
the mechanism by which the system communicates with the administrator. The administrator is aware
of what’s happening on the system by reading log files and can use those files to create a snapshot of
what’s occurring on the system at any given time.

The following sections examine the logging process in detail. You’ll find that logging on Unix is an
extremely flexible process that gives you a great amount of control over exactly what gets logged
and where those logs get stored. Unix gives you the power to specify exactly what messages are
written to which file on your system.

Each vendor differs slightly in where it chooses to place log files. Generally, the SYSV-derived sys-
tems (such as HP-UX, IRIX, and Solaris) place their log files in the /var/adm hierarchy, while the
BSD and Linux distributions (including MacOS X) use the /var/log directory for log files. The
/etc/syslog.conf file, which is discussed in the following section, can tell where log files will
be written.

18_579940 ch15.qxd 3/21/05 6:11 PM Page 269

The log files contain a wealth of information. The most important kinds of messages written to log files
include:

❑ System boot messages and boot-related failures

❑ User logins and locations

❑ Security information such as failed logins

❑ E-mail activity (successes and failures)

❑ Cron job status

Introducing Syslogd
System logs are the method by which programs running on your system can communicate with you. In sit-
uations where things are working correctly and as expected, the logs serve as a manifest of activity on your
system. When things are not working properly, the logs are invaluable in showing you exactly what’s hap-
pening on your system. Keep in mind the basic Unix philosophy of having many small programs or utili-
ties, each performing a dedicated task. With many specialized programs running at once, it is critical to be
able to know at any moment what any of these programs are doing. This is where syslog fits in.

Syslog is a specialized application that focuses on system logs. It’s one of the great and unsung parts of a
Unix operating system. Syslog, which stands for system logger, is a utility that provides central and unified
logging capability to the entire system. Rather than having each application manage its own log files in a
unique fashion, the syslog daemon (syslogd) manages all logs throughout the system. Syslogd does not
generate the messages that appear in log files on your system. It acts as a crossing guard on your computer,
showing the log messages generated by various programs which way to go. The operation of the system
logger is quite straightforward. Programs send their log entries to syslogd, which consults the configura-
tion file /etc/syslogd.conf and, when a match is found, writes the log message to the desired log file.

There are four basic syslog terms that you should understand:

❑ Facility — The identifier used to describe the application or process that submitted the log mes-
sage. Examples are mail, kernel, and ftp.

❑ Level — An indicator of the importance of the message. Levels are defined within syslog as
guidelines, from debugging information to critical events. These serve as labels. How these lev-
els are processed is entirely up to you.

❑ Selector — A combination of one or more facilities and levels. Log messages coming into syslog
are matched against the selectors in the configuration file. When an incoming event matches a
selector, an action is performed.

❑ Action — What happens to an incoming message that matches a selector. Actions can write the
message to a log file, echo the message to a console or other device, write the message to a
logged in user, or send the message along to another syslog server.

270

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 270

Understanding the syslog.conf File
Here’s an example of a system logger configuration file, /etc/ syslog.conf:

.err;kern.;auth.notice;authpriv,remoteauth,install.none;mail.crit
/dev/console

.notice;.info;authpriv,remoteauth,ftp,install.none;kern.debug;mail.crit
/var/log/system.log

Send messages normally sent to the console also to the serial port.
To stop messages from being sent out the serial port, comment out this line.
#*.err;kern.*;auth.notice;authpriv,remoteauth.none;mail.crit

/dev/tty.serial

The authpriv log file should be restricted access; these
messages shouldn’t go to terminals or publically-readable
files.
authpriv.*;remoteauth.crit /var/log/secure.log

lpr.info /var/log/lpr.log
mail.* /var/log/mail.log
ftp.* /var/log/ftp.log
netinfo.err /var/log/netinfo.log
install.* /var/log/install.log
install.* @192.168.1.50:32376

*.emerg

As you can see, /etc/syslog.conf is a plain text file, and its body looks like two columns. The first
column — actually the first part of each line — is the source of the logging information, that is, the sys-
tem or program that’s providing the information. The source is generally defined in two parts, a facility
and a level separated by a period —facility.level— and is commonly called the selector.

The second column (the end of each line) is the information’s destination, which can be many things,
including a text file, a console, a serial port, even a system logger running on another system. Toward
the end of the example file you’ll notice that an install.* selector shows up twice. It’s completely legal
to send the same result to multiple places; in this case, log entries belonging to the facility install are
being appended to the text file /var/log/install.log as well as being sent to a network syslog server
located at the IP address 192.168.1.50 (on port 32376).

Here are the available facilities for the selector.

271

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 271

Facility Description

auth Activity related to requesting name and password (getty, su, login)

authpriv Same as auth but logged to a file that can only be read by selected users

console Used to capture messages that would generally be directed to the system console

cron Messages from the cron system scheduler

daemon System daemon catch-all

ftp Messages relating to the ftp daemon

kern Kernel messages

lpr Messages from the line printing system

mail Messages relating to the mail system

mark Pseudo event used to generate timestamps in log files

news Messages relating to network news protocol (nntp)

ntp Messages relating to network time protocol

local0–local7 Local facilities defined per site

The following table explains the available syslog.conf levels.

Level Description

emerg System is unusable. Messages go to all logged in users on all terminals.

alert Action must be taken immediately.

crit Critical conditions.

err Error conditions.

warning Warning conditions.

notice Normal but significant condition.

info Informational messages.

debug Debug-level messages. Should be off in general use, as the verbose nature of
these messages will quickly fill disks.

none Pseudo level used to specify not to log messages.

The combination of facilities and levels enables you to be discerning about what is logged and where
that information goes. As each program sends its messages dutifully to the system logger, the logger
makes decisions on what to keep track of and what to discard based on the levels defined in the selector.

272

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 272

When you specify a level, the system will keep track of everything at that level and higher. The level acts as
a low-water marker. For example, it stands to reason that if you are interested in being notified of a warn-
ing in your mail system, you would also want to be notified of any err, crit, alert, and emerg messages.

Let’s take a look at a few example lines from /etc/syslog.conf:

lpr.info /var/log/lpr.log
mail.* /var/log/mail.log
ftp.* /var/log/ftp.log

Messages from the printing system (lpr) with a logging level that is equal to or greater than info will be
logged to the text file /var/log/lpr.log. The last two examples show the use of wildcards in selectors.
By using a wildcard for a level, you tell the system to log absolutely every message from that facility to
the location specified. In this case, any and all messages from the mail facility are going to the text file
/var/log/mail.log, and the ftp server is logging to the file /var/log/ftp.log.

The following “Try It Out” creates an entry to log ssh activity to a new logfile, ssh.log. The example
was done on a system running Mac OS X, so you may need to consult your system documentation for
the location of sshd_config, if it is not located in the /etc directory. Common locations for sshd_
config are /etc/ssh and /usr/local/etc/ssh. Additionally, while Mac OS X sets SyslogFacility
to AUTHPRIV, you may find another default SyslogFacility. Whichever one you use, you’ll change it to
LOCAL7 for this exercise.

Try It Out Configure a Log File
Configure syslog to log all ssh-related activity to a log file, called ssh.log.

1. Edit /etc/sshd_config. Change the line reading SyslogFacility AUTH to:

SyslogFacility LOCAL7

2. Edit /etc/syslog.conf. Add the following line to the end of the file:

local7.* /var/log/sshd.log

3. Enter the command:

sudo touch /var/log/ssh.log

4. Restart syslog, by entering the appropriate command for your system (for example, sudo kill
-HUP `cat /var/run/syslogd.pid`).

5. Test it out by making a connection to localhost.

Open a terminal window, type ssh localhost, and proceed to log in to your system as yourself.

When you receive a prompt, type exit to log out.

Then type this command:

sudo tail -f /var/log/ssh.log.

273

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 273

You will see an entry with details of your connection.

If you do not see your connection logged, you need to restart your ssh daemon by issuing the command:

sudo /etc/init.d/sshd restart.

How It Works
Here’s what happens:

1. Editing the sshd configuration file enables you to make changes to the way the ssh daemon
logs its activity, among other options. The sshd file logs its activity using the AUTH facility by
default. For this exercise, this is changed to a custom facility, LOCAL7, which is intended for local
use and will not be in use by existing programs on your system. Now you can easily direct all
sshd messages into a specified text file.

2. The syslog daemon is instructed to match local7 events and append them to a text file
/var/log/sshd.log.

3. The text file needs to exist on your system before being written to. Syslog does not create a file
for you, so you create the file /var/log/ssh.log, using the touch command.

4. Changes to /etc/syslog.conf do not take effect until you restart the syslog daemon. Issue the
vendor-appropriate command to do so on your system. (Entering the command man syslog
should tell you how it is done on your system.)

What’s the Message?
Now let’s take a look at the content of the messages that will be managed by syslog. The messages that it
outputs are structured in a very specific fashion, which is the very aspect that makes parsing system log files
a trivial matter for perl, sed, and other utilities that work with text, and especially with regular expressions.

Not all messages are logged in the same way or contain the same type of information. For this reason,
you should become familiar with the specific format of the type of log you want to parse before writing
scripts or regular expressions to extract the information.

Here’s an example message from ssh.log:

Jan 7 15:31:37 pandora2 sshd[16367]: Accepted password for craigz from
192.168.1.222 port 5242 ssh2

The message has the following format:

Date time hostname process[pid]:action:version

So the log message can be translated to the following:

On Jan. 7 at 3:31 p.m. sshd running on the host pandora2 with the PID of 16367 performed the following:
accepted a connection from the user craigz coming from the host 192.168.1.222 on port 5242; and the client
version was ssh2.

274

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 274

All of the sshd log messages on your system will follow the same format, whatever that format is. That
means you can use any of the utilities you have already seen (perhaps in a shell script) to extract infor-
mation when you need it. You just need to familiarize yourself with the format used by the programs
and utilities on your system.

The Logger Utility
Most Unix systems provide the logger system utility, which can be used to send messages to syslogd.
The program can send messages to a user-specified log file, and the facility and level can be assigned.
Here’s an example of the logger command:

darwin$ logger -p local7.info -t test_logger_message “test message”

The -p flag stands for priority, in this case local7.info, and the -t flag stands for -tag, which is a
label that will accompany your message.

In the “Configure a Log File” exercise, if syslog was configured to log messages of the local7 facility to
the file /var/log/sshd.log, this logger command would append the following line to that text file:

Nov 8 19:13:09 localhost test_logger_message: test message

It is useful to include the logger command in shell scripts that you create for system administration. By
utilizing the logger command, you get access to standard logging without having to write that code
from scratch. This makes it much easier to keep track of what your scripts are doing and to ensure that
you do not introduce errors involving logging in your scripts.

Shell scripting was discussed in Chapters 13 and 14.

Rotating Logs
As syslog evaluates events in real time and sends messages to the various log files as configured in /etc/
syslog.conf, it appends messages to existing text files. As more and more messages are appended, the
text files get quite large, and you soon realize that it’s simply not practical to retain every message ever
issued by the system.

As a system administrator, you need to review recent system messages in a timely fashion, but you also
must not allow log files to fill up all of the free disk space. Establishing a log retention policy is a good solu-
tion. As with all aspects of logging, there are many options when it comes to managing log file retention.
Each site has different needs, and you need to devise a policy that is sensible for you and your situation.

Following is an example of a basic policy; of course, you can use any policy or variation you want:

Maintain each log file for a week. That is, each log file contains entries for 7 consecutive days. Then, archive
log entries dated earlier than 1 week ago into a separate file. There are seven archive files, used one per
week in order, each containing 1 week of logs. These older files kept on the system along with the current
log file provide 2 months of system log data. The older log files should be kept in the same directory as the
current logs and should be compressed, in order to take up the least amount of disk space possible.

275

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 275

Most Unix systems come with a facility to manage log rotation already installed. It can be configured to
implement any desired log retention policy. These programs usually run from the cron facility, or the peri-
odic daemon, and will parse the log files for you, creating and archiving previous dates log files automati-
cally. A successful implementation of the example policy just described would result in a directory listing
that resembles the following:

system.log
system.log.0.gz
system.log.1.gz
system.log.2.gz
system.log.3.gz
system.log.4.gz
system.log.5.gz
system.log.6.gz
system.log.7.gz

The way logging policies are implemented differs between Unix releases, and so do the programs used
to implement them. For example, FreeBSD provides newsyslog, while Red Hat offers the excellent and
flexible logrotate. Either of these makes your job quite a lot easier.

Monitoring System Logs
The system logging configuration’s flexibility is of tremendous benefit to the system administrator.
Knowing exactly what kind of messages are retained and where those messages are kept on the system
makes the task of investigating abnormal or erratic behavior that much easier.

However, the central task of systems administration is to keep things running, so while it’s helpful and
necessary to take a look back to figure out what went wrong in the event of a system failure, it is more
important to have an accurate sense of what is going on with the system right now.

Given an infinite amount of free time and a considerable degree of patience, you could open up terminal
windows for each log file on your system, issue the tail -f command in each of those windows, and
read each log file in real time. Reading each message as it comes through syslog certainly will give you
an up-to-date and accurate sense of exactly what’s happening, so you can take any corrective measures
necessary to ensure that system continues to behaves correctly.

In practice, though, this is far from practical. Even if you would not mind reading all of your log files in
real time, you would not be able to accomplish the task because you’d have to take breaks for sleep and
other necessary maintenance of your own system. However, it’s vital that those files be monitored with
the same vigilance as if you were reading them yourself.

This is where automation is critical. There are several excellent packages available that can automate
watching the logs for you. Two such tools are logwatch and swatch, which are explored in the following
sections. These two programs provide complimentary actions. Logwatch gives you convenient sum-
maries of your log files, while swatch (Simple WATCHer) actively monitors your log files for predefined
triggers and sends alerts based on those events.

276

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 276

Logwatch
Logwatch is available from http://www2.logwatch.org:81/. It’s included with most Red Hat–based
distributions, and may already exist on your system. If you need to download and install the software,
both RPM (Red-hat Package Manager) and source-based downloads are available. (As of this writing, the
most recent version of logwatch is 5.2.2.) This section takes you through the source-based installation.

The software runs as a script, so there’s no need for compilation. Simply download the source and run
the following commands:

$ tar -zxvf logwatch-5.2.2.tar.gz
$ cd logwatch-5.2.2
$ sudo mkdir /etc/log.d
$ sudo cp -R scripts conf lib /etc/log.d

For more information on installation, consult the README file included in the logwatch distribution.

The distribution also comes with documentation in man page format. To install the man page, issue the
following command:

$ sudo cp logwatch.8 /usr/share/man/man8

You will also want to copy the logwatch Perl script to a central location; /usr/sbin is generally a good
place for such scripts.

$ sudo cp scripts/logwatch.pl /usr/sbin

Logwatch handles most standard log files without any additional configuration, but it is extremely flexible
and you can create custom log file definitions easily. All you need to do is generate a configuration file in
the /etc/log.d/conf/logfiles directory, define a service filter in the /etc/log.d/conf/services
directory, and then create that filter in /etc/log.d/scripts/services. The filter basically reads log
entries and outputs report information. For more information on the process of configuring custom log
filters, refer to the document included with the logwatch software, HOWTO-Make-Filter.

Logwatch’s configuration file, /etc/log.d/conf/logwatch.conf, is quite well commented and easy
to read. Consult that file to customize your installation of logwatch.

An entry in the crontab like the following will run logwatch nightly at 11:00 p.m.:

0 23 * * * /usr/sbin/logwatch.pl

Following is an example of logwatch output from a live server (all IP addresses have been replaced with
192.168.x.x addresses for the sake of privacy). The report is tracking the logs from an ftp server and an
Apache server, and is reporting on disk space remaining on a Mac OS X system. This is fairly representa-
tive of the kinds of reports that logwatch generates. This report is sent via e-mail to an address that is
added to the logwatch configuration file.

################### LogWatch 5.2.2 (06/23/04) ######################
Processing Initiated: Sat Nov 13 23:00:05 2004
Date Range Processed: yesterday

277

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 277

Detail Level of Output: 5
Logfiles for Host: xxx.local

##

--------------------- ftpd-xferlog Begin ------------------------

TOTAL KB OUT: 121287KB (121MB)
TOTAL KB IN: 718967KB (718MB)

Incoming Anonymous FTP Transfers:
192.168.1.1-> /Library/WebServer/Documents/file_depot/work/a_and/AE_1.mov b

---------------------- ftpd-xferlog End -------------------------

--------------------- httpd Begin ------------------------

1798.89 MB transfered in 550 responses (1xx 0, 2xx 373, 3xx 141, 4xx 35, 5xx 1)
74 Images (0.76 MB),
140 Movies files (1785.90 MB),
327 Content pages (0.17 MB),
2 Redirects (0.00 MB),
1 mod_proxy connection attempts (0.00 MB),
6 Other (12.06 MB)

Connection attempts using mod_proxy:
192.168.1.10 -> 192.168.1.12 : 1 Time(s)

A total of 3 unidentified ‘other’ records logged
\x05\x01 with response code(s) 1 501 responses
GET /work/client_logo_hi_res.psd HTTP/1.1 with response code(s) 4 200 responses
GET /editors/ediitor HTTP/1.1 with response code(s) 1 401 responses

A total of 1 ROBOTS were logged
---------------------- httpd End -------------------------

------------------ Disk Space --------------------

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/disk0s9 30005340 21754248 7995092 73% /
devfs 92 92 0 100% /dev
fdesc 1 1 0 100% /dev
<volfs> 512 512 0 100% /.vol
automount -nsl [291] 0 0 0 100% /Network
automount -fstab [301] 0 0 0 100% /automount/Servers
automount -static [301] 0 0 0 100% /automount/static
------------------ Fortune --------------------
All science is either physics or stamp collecting.

-- Ernest Rutherford
###################### LogWatch End #########################

As you can see, the output is verbose, well organized, and clear. This type of information is obviously
quite useful for any system administrator.

278

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 278

Swatch
Reading log file summaries nightly can keep you well apprised of the events of the day. However, there
are certain kinds of events that you should know about as they happen or as quickly afterward as
possible. These events include a disk or volumes coming close to filling up, failed root login attempts,
other login failures, and similar events of a critical nature.

Swatch is a utility that can perform many actions upon recognizing a trigger event. For example, a failed
root user login attempt that’s written to a log can be set as a trigger event, and the corresponding action
would be to notify the system administrator.

You can download swatch from http://swatch.sourceforge.net. (The current version as of this
writing is 3.1.1.) To install swatch, download the archive and execute the following commands.

$ tar -zxvf swatch-3.1.1.tar.gz
$ cd swatch-3.1.1
$ perl Makefile.PL
$ make
$ make test
$ make install
$ make realclean

If you run into errors during the install process that resemble the following, you need to install the
required CPAN (Comprehensive Perl Archive Network) modules listed in the errors.

Warning: prerequisite Date::Calc 0 not found at (eval 1) line 219.
Warning: prerequisite Date::Parse 0 not found at (eval 1) line 219.
Warning: prerequisite File::Tail 0 not found at (eval 1) line 219.
Warning: prerequisite Time::HiRes 1.12 not found at (eval 1) line 219.

Do this with commands like these:

$ sudo perl -MCPAN -e “install Date:Calc”
$ sudo perl -MCPAN -e “install Date::Parse”
$ sudo perl -MCPAN -e “install File::Tail”
$ sudo perl -MCPAN -e “install Time::HiRes”

Swatch expects a configuration file called .swatchrc to be located in the home directory of the user
who is executing the program. An alternate configuration file can be specified on the command line with
the -config-file directive.

The configuration file consists of tab-separated fields (an example config file entry follows after the
table). Two fields are mandatory and the others are optional. The mandatory two fields are pattern and
actions; throttle is an optional field. The pattern is what will be matched, and the action is what is to
happen when a match is found. The following table lists possible actions.

279

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 279

Action Description

Bell Sounds the system bell.

Echo Sends the matching line to STDOUT. Formatting options such as red and blink are
available.

Mail Sends the matched line to the user running the command. Alternate user or subject
can be specified.

Pipe Takes a command as an argument, and pipes the matched line into that command.

Exec Similar to pipe; takes a command as an argument. Using special variables ($* and $0),
the matched line can be sent to the command. Portions of the matched line can be speci-
fied using $1, $2, and so on.

Write Takes a username or a colon-separated list of usernames as an argument and uses
the system write command to send the matched line to the specified user(s).

Throttle Sets the number of hours, minutes, and seconds that must pass before an action is
taken on the match. For example, throttle 2:00:00 would limit the actions for the specific
pattern being watched to only occur once every 2 hours. This is useful in preventing a
deluge of actions being taken in the event the same trigger occurs over and over.

Ignore The matching line is ignored, and no action occurs.

Here is a simple example swatch configuration file:

ignore /worthless_message/
watchfor /[dD]enied|/
echo=red
mail address=admin@my.organization.com, subject=”Important Event”
throttle 1:00:00

This configuration would discard any lines with the text “worthless_message” in them. However, upon
finding the text “Denied” (or “denied”) in a line, it would take several actions:

❑ Send the line in red text to the terminal of the user running the command

❑ Send an e-mail to the user admin@my.organization.com with the subject of “Important
Event”

❑ Ensure that this e-mail goes out only once per hour (throttle command)

Swatch allows for very fine selection of text from your log files, and you should check the examples
folder that comes with the software, as well as read the documentation for swatch, to get some ideas of
how to configure the software to best serve your needs.

280

Chapter 15

18_579940 ch15.qxd 3/21/05 6:11 PM Page 280

Summary
In this chapter, you learned what logs are and what they are needed for. You examined the system logging
daemon (syslogd) and learned how syslog works as well as how you can use it to customize your logging.

You saw how to create a file for logging and how to set up syslogd to log to it using the syslog.conf con-
figuration file, and you explored log rotation. Deciding which messages to log and how to store them is
only part of the job; you took a look at a couple of utility programs for monitoring system logs: Logwatch
and Swatch.

By now, you realize the power and flexibility that Unix systems provide for maintaining an accurate picture
of how your system is faring as well as providing a platform for reacting to incoming information. Building
a picture of what is happening on your Unix box or on an entire system is a task with which you probably
feel comfortable now.

Exercises
1. You want kernel alerts printed to the screen. How do you go about it?

2. Modify the syslog.conf file so that mail debug messages are sent to another host (you can
assume the host’s name is Horatio and that it has a system logging daemon).

3. How do you make swatch e-mail the root user if there has been any failed login attempts using
invalid passwords? The action should also sound the system bell and provide a meaningful subject
line for the e-mail. (Assume that the string INVALID will be present in one of your logs as a result of
the failed login.)

281

System Logging

18_579940 ch15.qxd 3/21/05 6:11 PM Page 281

18_579940 ch15.qxd 3/21/05 6:11 PM Page 282

16
Unix Networking

Access to computer networks for computer applications to communicate important data has changed
from an expensive luxury to an absolute requirement of continuous necessity virtually overnight.
While there have been numerous implementations of computer networks, the heart of the network
revolution, the Internet, has but one protocol, TCP/IP. The protocol is in use all over the world and is
used by nearly every computer system from Mac OS X and Novell Linux Desktop to Sun Solaris and
IBM’s AIX, even Microsoft’s non-Unix Windows systems. And it’s based on the implementation of
TCP/IP originally developed for the Unix-based BSD operating system.

With the use of the Internet and all other networks growing at an incredible rate, it’s necessary to
provide networking tools and services to take advantage of today’s quick computing bandwidth and
computational power. This chapter examines these important tools and explores how the underlying
TCP/IP protocols work while bringing together lessons from previous chapters on system automa-
tion and shell scripting to show how to manage or administrate network resources on a Unix system.

Mac OS X systems utilize TCP/IP for networking, and while TCP/IP is traditionally configured
using GUI-based preference panes, all of the command-line utilities mentioned in this chapter
work the well with Mac OS X as they do with other Unix systems.

TCP/IP
TCP/IP actually refers to many different aspects of the protocol suite that provides methods for var-
ious communication methods over networks driven by or interconnected by two specific protocols
at specific protocol layers: Transmission Control Protocol (TCP) and Internet Protocol (IP).

Introducing TCP
TCP is the reliable, connection-oriented transport layer protocol of the TCP/IP protocol suite. It
provides a method for guaranteeing that data arrives at its destination, in order. The in order part
of that statement is important because the protocol breaks the data into packets, properly referred

19_579940 ch16.qxd 3/21/05 6:10 PM Page 283

to as segments. The guarantee comes from the fact that TCP contains a retransmission scheme in case the
receiving host does not send an acknowledgment of a segment back to the sender.

The TCP header consists of the following things:

❑ Destination and source port — The beginning and end points to a connection for protocols lay-
ered on top of TCP.

❑ Sequence number — Where in the sequence of packets any given packet is.

❑ Acknowledgement number — When an acknowledgment packet is sent, the highest packet
number of all the packets that have been collected is put as the acknowledgment number.

❑ Window — Restricts the number of packets sent depending on how much time a slow link in
the networks takes to process packets.

❑ Checksum — Ensures data sent is correct.

Most application-layer protocols used on the Internet use TCP as their transport layer protocols, including
HTTP, FTP, SMTP, TELNET, and POP. There’ll be more about these protocols later in the chapter.

Introducing IP
IP is the method or protocol by which data is actually sent from one computer to another on the Internet.
Each computer, or host, is assigned at least one address that uniquely identifies it from all others. When
TCP divides the data into various packets for transmission, IP provides each packet with both the sender’s
Internet address and the receiver’s address and then sends the packet to a network gateway that knows its
position within the interconnection networks that form the Internet. The gateway computer reads the desti-
nation address and forwards the packets to an adjacent gateway that, in turn, reads the destination address
and so forth across the Internet until one gateway recognizes the packet as belonging to a system within its
immediate neighborhood or domain. That gateway then forwards the packet directly to the computer
whose address is specified.

Because a message is divided into a number of packets, each packet can, if necessary, be sent by a different
route across the Internet. Packets can arrive in a different order than how they were sent, and just as it was
TCP that divided the packets up, TCP is the protocol that puts them back in the right order. Unlike TCP, IP
is a connectionless protocol, which means that there is no continuing connection between the end points
that are communicating. Each packet that travels through the Internet is treated as an independent unit of
data without any relation to any other unit of data.

Other Protocols Used with TCP/IP
As previously mentioned, TCP/IP contains many different protocols that all work together to make TCP/IP
networks function. Other protocols within the suite often referred to as TCP/IP include the following examples
of protocols that work at various layers of the overall connection to ensure the correct transmission of data.

ICMP (Internet Control Message Protocol)
Internet Control Message Protocol (ICMP) is used to send traffic control information between IP-connected
hosts and gateways. ICMP datagrams are created and transmitted in response to IP packets that require
some form of status response to the original sender, usually indicating a connectivity failure between hosts.

284

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 284

Consequently, Unix tools such as traceroute, discussed later in this chapter, are used to determine status
information about the network. Many tools common to Unix systems, such as traceroute, use ICMP,
despite the fact that ICMP is not a connection-oriented protocol and many gateways set ICMP to a low pri-
ority such that ICMP data may be lost in event of congestion.

UDP (User Datagram Protocol)
UDP, the User Datagram Protocol, is a transport-layer protocol akin to TCP and ICMP. However, unlike TCP,
it is unreliable in the sense that a packet is not guaranteed to arrive at its destination. This in turn allows
greater flexibility to an application that wants to do its own flow control, and can be used in places where a
connection-oriented approach is not appropriate, such as for multicast data. That is, UDP provides a method
for other protocol layers that are broadcasting data to one or more computers at any given time—protocols
such as NFS, DNS, and RTP—to allow the given protocol greater control over how the data flows or is broad-
cast simultaneously to various clients.

ARP (Address Resolution Protocol)
ARP is a network-layer protocol used to convert an IP address into a physical address of the network inter-
face hardware, such as an Ethernet address for an Ethernet card. A host wishing to obtain a physical address
sends a TCP/IP-based request using the ARP protocol. The host on the network that has the IP address in
the request then replies with its physical hardware address.

RARP (Reverse Address Resolution Protocol)
If ARP maps an IP address to a network card, then it follows that RAPR is used to map a known hard-
ware address of a network interface card to an IP address. This occurs at startup; the software built into
the hardware uses RARP to request its IP address from a server or router. Most computers use Dynamic
Host Configuration Protocol, discussed later in this chapter, instead of RARP.

IGMP (Internet Group Management Protocol)
Internet Group Management Protocol (IGMP) is standard for IP multicasting in the Internet used to
establish host memberships in particular multicast groups on a single network. The mechanisms of the
protocol allow a host to inform its local router that it wants to receive messages addressed to a specific
multicast group. Multicasting is a method of sending data to a specific list of machines on a network,
rather than to all machines, which would be broadcasting, or to a single, specific machine. IGMP is the
protocol that allows multicasting to happen on a TCP/IP network.

HTTP (Hypertext Transfer Protocol)
Hypertext Transfer Protocol (HTTP) is the underlying protocol used by the World Wide Web. HTTP
defines how messages are formatted and transmitted, and what actions Web servers and browsers
should take in response to various commands.

HTTP is called a stateless protocol because each command is executed independently, without any
knowledge of the commands that came before it. This is the main reason that it is difficult to implement
Web sites that react intelligently to user input.

Unlike protocols such as UDP and TCP, HTTP, as well as other protocols such as File Transfer Protocol (FTP),
Simple Mail Transfer Protocol (SMTP), and Simple Network Management Protocol (SNMP), is an application
protocol that resides on top of the protocol stack that TCP and IP create for network connectivity.

285

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 285

FTP (File Transfer Protocol)
FTP is another application-layer protocol and is used to exchange files over the Internet. It works in the
same way as HTTP for transferring Web pages from a server to a user’s browser and SMTP for transferring
electronic mail across the Internet in that FTP uses the Internet’s TCP/IP protocols to enable data transfer.

SMTP (Simple Mail Transfer Protocol)
As mentioned, SMTP is the protocol for sending e-mail messages between servers. However, unlike
HTTP or FTP, another protocol, such as Post Office Protocol (POP) or Internet Message Access Protocol
(IMAP), is usually employed for retrieving the messages from the last point, the mail server queuing the
messages, and the client requesting the collection of messages waiting in the mail queue. In addition,
SMTP is generally used to send messages from a mail client to a mail server.

Network Address, Subnetworks, Netmasks, and Routing
with TCP/IP

The IP addressing scheme as described within the protocol is integral to the process of routing IP packets
through a network or interconnected network of computers. Each IP address has specific components and fol-
lows a basic format that can be subdivided and used to create addresses from subnetworks to specific machine.

Each host on a TCP/IP network is assigned a unique 32-bit logical address that is divided into two main
parts: the network number and the host number. The network number identifies a network and must be
assigned by a service provider. The host number identifies a host on a network and is assigned by the
local network administrator. The 32-bit IP address is divided into four 8-bit groups, separated by dots,
and represented in decimal format. Each bit in a group has a value ranging from 0 to 255.

However, which part of an IP address identifies the network and which part is associated with the host
depends on which class network the IP address is a part of — that is, the class of the address determines
which part of the address belongs to the network address and which part belongs to the host address.
All hosts on a given network share the same network prefix but must have a unique host number. There
are five different network classes, but the most common three are as follows:

❑ Class A Network — In a Class A Network the first group of four numbers ranges anywhere
from 1 to 126 and identifies the network while the remaining three groups indicate the host
within the network. Thus a Class A Network can have 16 million unique hosts on each of 126
networks. An example of a Class A IP address is 16.42.226.10, where 16 identifies the network
and 42.226.10 identifies the host on that network.

❑ Class B Network — In a Class B Network the first group of four numbers represents an IP
address range anywhere from 128 to 191. In this setup the first two groups of digits identify the
network, and the remaining two indicate the host within the network. Thus a Class B Network
can have 65,000 hosts on each of 16,000 networks. An example of a Class B IP address is
128.204.113.42, where 128.204 identifies the network and 113.42 identifies the host on that net-
work.

❑ Class C Network — In a Class C Network the first group of four numbers ranges anywhere
from 192 to 223, and the first three groups of digits identify the network and the remaining
group indicates the host within the network. Thus, a Class C Network can have 254 hosts on
each of 2 million networks. An example of a Class C IP address is 192.168.42.1, where 192.168.42
identifies the network and 1 identifies the host on that network.

286

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 286

In any case, no matter what class of network is in use on a given subnetwork, a number of IP numbers
are reserved for special use. For example, one address for any give subnetwork will represent the router
or gateway from which any computer within the network will use to reach computers on another net-
work. Other reserved IP address might include a broadcast address — a packet addressed to the broad-
cast IP will be sent to every host computer on the subnetwork — or an address that represents the entire
subnetwork. Moreover, the address 127.0.0.1 is assigned to the loopback interface on any given system.
That is, besides any given unique address, 127.0.0.1 will represent to a Unix system a software connec-
tion to the machine itself. In addition, the address 0.0.0.0 represents the entire network for any given
Unix system. In other words, on a Class C Network, only 253 (out of 256) IP numbers are actually avail-
able for use as host names on a given subnetwork.

What Is a Subnetwork?
IP networks can be divided into smaller networks called subnetworks, or subnets, that provide the net-
work administrator with several benefits, including extra flexibility, more efficient use of network
addresses, and the capability to contain broadcast traffic because a broadcast will not cross a router.

Whereas the network part of an IP address must be assigned by a service provider, the subnet and host
address are under local administration. As such, the outside world sees an organization as a single net-
work, from the network address, and has no detailed knowledge of the network’s internal structure.

Thus a given network address can be broken up into one or many subnetworks. For example,
192.168.1.0, 192.168.42.0, and 192.168.72.0 are all subnets within network 192.168.0.0, with all the zeros in
the host portion of an address specifying the entire network should the netmask be set to denote that the
first three numbers of the IP address have to be the same for a machine to be on the same subnet.

If a network is implemented as a collection of subnets, there has to be some way to tell it apart from a
nonsubnetted network. As previously noted, an IP address defines the network and the host. If a net-
work is to have a subnet, there needs to be a representation of it in the IP address. This is identification is
called the submask or netmask.

A subnetted IP address is represented by assigning a bit mask for each bit in the IP address. If the bit
mask is on, that part of IP address is considered part of the network address; if off, it is considered part
of the host address.

Should the mask be set to on for a section of the IP address, the value in the netmask is 255. If off, the
value is 0. For example, if the netmask is set to 255.255.255.0 the first three sets of IP addresses have to be
the same for an address to be on the same subnet.

Thus if our group of example IP addresses, 192.168.1.0, 192.168.42.0, and 192.168.72.0, had a netmask of
255.255.255.0, should any of these computer systems want to communicate with each other, they would
have to first route the traffic via a network gateway to communicate between subnets.

The same would be true for two systems with IP addresses 192.168.0.42 and 16.42.226.10 if the netmask
was set to 255.0.0.0, 255.255.0.0, or 255.255.255.0.

However, if the netmask were 255.255.0.0 for the IP addresses of 192.168.1.0, 192.168.42.0, and
192.168.72.0, there would be no need to pass any packets via a network gateway because all of three
addresses would present machine on the same subnet.

Thus, if the IP address is similar, it must be on the same subnet. Otherwise, network packets need to go
through the gateway.

287

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 287

IP Routing
IP routing protocols are dynamic, which calls for routes to be calculated automatically at regular inter-
vals by software in routing devices. This contrasts with static routing, where routes are established by
the network administrator and do not change until the administrator changes them.

Both methods can be configured on a Unix box. Static routes are set using the route command by the ini-
tialization scripts during system boot. The most common configuration uses a default gateway to which
all traffic not destined for hosts on the local subnet is directed. It is the function of the default gateway to
figure out how to route the packets to their destination.

Dynamic routing under Unix means that the routed daemon is running on the system. The routed dae-
mon uses the Routing Information Protocol to do dynamic route discovery.

Routing Information Protocol
A number of networks use TCP/IP routing inside a network domain. Routing a network using TCP/IP is
handled by what is known as the Routing Information Protocol, or RIP. RIP works by using the IP broad-
cast mechanism on the local subnet to get information on how best to route the traffic to its destination.

On a TCP/IP-based network each host is configured with a static default route or gateway system to
mange the network. Each time a host sends a TCP/IP packet to a destination outside of the subnet the
packet is sent to the gateway from which a dynamic route is discovered for the packet to take. That is,
RIP generates queries using the IP broadcast addresses on the attached subnets.

A router or gateway host on the attached subnet answers these RIP broadcasts with its own routing
table, which contains information on how to get to other subnets along the way.

Using this method, soon all routers on the network know the possible routing paths to any remote desti-
nation within the overall network. The path that RIP chooses for the packets is based on the least num-
ber of network hops, or connections from the origin to the destination.

An IP routing table consists of destination address or addresses for possible hops pairings to enable
dynamic routing. This means that the entire route is not known at the onset of the journey for the data
packet and is calculated by matching the destination address within the packet with an entry in the cur-
rent network router’s routing table.

Because the entire network is not known, each node does not care whether the packets get to their final
destination, nor does IP provide for error reporting back to the source when routing anomalies occur.
This task is left to another Internet protocol, the ICMP, which is discussed elsewhere in this chapter.

Domain and Host Names
Before a path to a network resource can be determined, the network location of a host needs to be found.
On a small network this might simply mean a user entered in the IP address into an application, or the
application may already know the IP address in question. This method is impractical on a network
divided into multiple subnetworks or on the Internet as a whole.

To solve this issue Domain Name System (DNS) network service has been developed to translate alphanu-
meric domain names into IP addresses. A domain name is a mnemonic, a placeholder for an actual IP address

288

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 288

and, because domain names are alphanumeric, can be made up of words or numbers that are easier to remem-
ber. The network, however, is still based on IP addresses, so every time a domain name is used, a DNS service
located on the network must translate the name into the corresponding IP address for the routing process to
begin. For example, the domain name www.wrox.commight translate to 208.215.179.178 whereas the domain
name for www.weinstein.org translates into the IP address 69.36.240.162. Better yet, because a DNS entry can
be updated and associations can be changed a host can change networks or subnets without requiring every
user or application to know the new IP address.

The DNS system is, in fact, its own network. If one DNS server cannot translate a particular domain name
to a specific IP address, the DNS server will ask another DNS server, and so on, until the correct IP address
is returned.

DNS
Depending on system and configuration, when a domain or host name is entered the system will check
local files to see if it already has a name to an IP-address mapping for that host name. If found, the local
entry is treated as authoritative, and the routing process begins. This mapping is kept in the /etc/hosts
file. In the absence of a nameserver, any network program on the system consults this file to determine the
IP address that corresponds to a host name.

Otherwise, a request to a DNS service is generated, and in most cases a network request is sent out to a
nameserver for a resolution. A nameserver is simply a server on the network that translates names from
one form into another, from domain name to IP address or, in some cases, from IP address to domain
name. Note that this means that for a system to properly function the IP address of the DNS service (the
nameserver) — if it is not located on the system in question — must be known for the DNS process and
all other network requests dependent on it to be successful. Thus, in most cases the system looking for
resolution to a request will have a list of at least one, if not more name servers, listed by IP address.

A list of IP addresses where DNS services are located can be found in the /etc/resolv.conf file:

nameserver 192.168.0.2
nameserver 216.231.41.2

If the server being queried has authoritative data for that hostname, it returns the IP address. If the
server being queried does not hold the definitive result, and it is configured to forward queries to other
nameservers, it will consult the list of root nameservers.

Starting from the right, the query will be broken down by finding the definitive system that holds data for
that domain. For example, to resolve www.wrox.com, the root nameserver that holds authoritative data for
the top-level domain (TLD), .com, will answer the DNS request. If the request is for www.weinstein.org,
another set of root nameservers, those that know of the domains within the .org TLD, will be queried. The
next right host element of the domain or host name is then evaluated, the query for a nameserver that
holds the authoritative data for wrox or weinstein, respectively, is then asked, and requests for a specific
host or subdomain will then be forwarded to that DNS system. This whole process repeats until the system
holding the definitive information for the destination in question is reached. Once this happens, the IP
address of the system that will respond to the domain name in question is known, and the TCP/IP routing
of packets between the two systems can begin.

289

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 289

Setting Up a Unix System for a TCP/IP
Network

As you might expect, you can find a number of software tools for adding a Unix-based system to a
TCP/IP network as well as software for managing a TCP/IP network, subnet, or host.

As mentioned in the discussion on the TCP protocol, a TCP packet includes information about a port.
TCP can make network connections between a port on the source and a port on the destination hosts; the
data packets are transmitted between actual systems through these ports. Moreover, with TCP a certain
range of ports are assigned specific duties; for example, ports less than 1024 on all Unix systems tend to
be accessible only by an application with root privileges because these ports are assigned to established
protocols such as HTTP or FTP. Port 80, for example, is the port that any daemon assigned to providing
Web services, responding to HTTP requests, will bind itself to so that it can listen for requests from
remote clients on the network. Because the remote client knows that port 80 is the HTTP port, it will,
unless directed otherwise, send all HTTP requests to port 80. TCP supports multiple ports, meaning that
one host can answer requests for multiple protocols. Moreover, this means that multiple outgoing
requests can also be made because both systems, the client and the server, will have to respond as well
as answer to these requests multiple times to complete a network session.

Configuring for a TCP/IP Network Request
There are two ways to configure a Unix system for a TCP/IP network, either with a static IP address that
never changes, or with a dynamic IP address that is pulled from a pool of IP addresses that, for the time
being, the host can use to access the network. Either method has its own set of advantages and disadvantages.

On various Unix systems, you will find two very useful command-line tools for checking the configuration of
a network interface card as well as setting static IP address for a network interface card—ifconfig and route.

Try It Out Use Ifconfig and Route
1. From the network administrator or service provider, get a static IP address to assign to a Unix

system (for example the IP address of 192.168.0.42).

2. Use the following command:

% sudo ifconfig eth0 192.168.0.42 netmask 255.255.255.0

3. To test the settings have been assigned properly, type ifconfig again at the command line, this
time omitting any arguments:

% ifconfig

The output should look something like this:

eth0 Link encap:Ethernet HWaddr 00:E0:18:90:1B:56
inet addr:192.168.0.42 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1295 errors:0 dropped:0 overruns:0 frame:0
TX packets:1163 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

290

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 290

Interrupt:11 Base address:0xa800

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:139 errors:0 dropped:0 overruns:0 frame:0
TX packets:139 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

4. To assign the default gateway for 208.164.186.12, use the following:

% sudo route add default gw 208.164.186.12

How It Works
The ifconfig utility is the tool used to set up and configure the network card. No matter how the network
information is saved, at startup and at any time while the system is running, ifconfig is the tool for con-
figuring the network card. The network information does need to be saved if the configuration is to be
kept, because the settings will not survive a reboot.

Usually, the need for using ifconfig directly at the command line is for testing, to see the current settings
or to change the TCP/IP networking settings manually. To make the changes permanent, the user has to
set them in the files related to networking functionality; for example, on a FreeBSD machine the informa-
tion for ifconfig is kept in the rc.conf file:

defaultrouter=”192.168.0.1”
hostname=”chaffee.weinstein.org”
ifconfig_xl0=”inet 192.168.0.15 netmask 255.255.255.0”

For a Linux system the information for network configuration is stored in the location /etc/syscon-
fig/network.

In any case, in the previous example, the default route is set up to go to 192.168.0.1 using the route com-
mand tool.

A Dynamic Setup
One problem with assigning static IP addresses and routing information, such as in the previous exam-
ples, is the issue of changing networks and configurations when traveling with a portable system such
as a laptop, or notebook, computer. It can also be tedious for a network administrator to keep track of
which IP addresses have been assigned and which are free for a collection of desktop systems on any
given network. One solution that has popped up over the years is for network administrators to assign a
pool of IP addresses that can be temporarily assigned to mobile systems through a service known as
Dynamic Host Configuration Protocol (DHCP). DHCP gives a user the ability to receive the needed IP
address, network mask, routing information and DNS server addresses in a dynamic manner.

Try It Out Use DHCP
1. From the network administrator or service provider, find out if a DHCP service is up and run-

ning on the network

291

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 291

2. Configure the system to use the DHCP client to assign the dynamic information to the network
interface. On FreeBSD, for example, enter the following line in the file /etc/rc.conf:

ifconfig_ed0=”DHCP”

For a Linux system, edit the file /etc/sysconfig/network-scripts/ifcfg-eth0 such
that it contains the following:

DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes

3. Reboot the system.

4. To test the settings have been assigned properly, type ifconfig again at the command line, this
time omitting any arguments for the command, as follows:

% ifconfig

The output should look something like this, only instead of a static IP address assigned by what is con-
tained on one of the system files, the IP address should have been assigned by the DHCP server:

eth0 Link encap:Ethernet HWaddr 00:E0:18:90:1B:56
inet addr:192.168.0.72 Bcast:192.168.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1295 errors:0 dropped:0 overruns:0 frame:0
TX packets:1163 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:11 Base address:0xa800

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:139 errors:0 dropped:0 overruns:0 frame:0
TX packets:139 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

How It Works
When a Unix system is started, it wants to assign an IP address to the network card. If the IP address is
static, this information is located on the system and assigned by ifconfig, as noted in the previous exam-
ple. If the information is to be assigned dynamically, the system broadcasts a message requesting a
DHCP server. This request includes the hardware address of the requesting client, and any DHCP server
receiving the broadcast will send out its own broadcast message to the client offering an IP address for a
set period of time, known as the lease period.

The client selects one of the offers received. Normally, it looks for the longest lease period. Once an
address is selected, the client lets the DHCP server know it has selected an offered, leased IP address and
identifies the selected server.

The selected DHCP server then gives an acknowledgment that includes the IP address, subnet mask,
default gateway, DNS server, and the lease period. Then the client, using ifconfig, assigns the proper
information to the network interface.

292

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 292

Sending a TCP/IP Network Request
There are a number of clients, depending on what service is to be requested, for a Unix system. In addi-
tion, there are a number of command-line tools on various Unix systems that can be used to verify that a
network is properly configured and working.

To test a network connection or to verify whether a network connection to one or more hosts is faulty or
slow, the ping command, from the submariners’ term for a sonar pulse, sends an ICMP Echo Request
message that requests the remote host to send an echo reply that includes the sent message data. If all is
well, the remote host will send a reply, and the amount of time passing between request and reply can be
calculated.

Try It Out Test with ping
At the command line enter the following:

% ping www.wrox.com

The output should look something like this:

% ping www.wrox.com
PING www.wrox.com (204.178.64.166) from 192.168.0.15 : 56 data bytes
64 bytes from 208.164.186.2: icmp_seq=0 ttl=128 time=1.0 ms
64 bytes from 208.164.186.2: icmp_seq=1 ttl=128 time=1.0 ms
64 bytes from 208.164.186.2: icmp_seq=2 ttl=128 time=1.0 ms
64 bytes from 208.164.186.2: icmp_seq=3 ttl=128 time=1.0 ms

--- 208.164.186.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 1.0/1.0/1.0 ms

How It Works
As noted, the ping command sends an ICMP Echo Request message to the remote machine to send an
echo reply that includes the sent message data. When the reply message returns, the round-trip for the
ping request can be calculated and information about the network status to a host can be determined.

When connection attempts to a remote machine fail with time-outs, “host unreachable”, and
“network unreachable” errors, or if the packet loss is high, the connection is not getting through
somewhere along the path. One issue may be that a network firewall, a network device designed to
block or filter network traffic between machines on a private network and the outside network at large,
might not allow ICMP traffic to pass.

Another issue may be a temperamental network connection. Try waiting a few moments to see whether the
network connection will re-establish itself, and then make sure the DNS system is responding properly and
the network interface of the computer is configured and running properly.

Try It Out nslookup, dig, and host
To check the responsiveness of a DNS server or to look up the IP address of a domain/host name manu-
ally, try the following with the nslookup, dig, or host commands:

% nslookup www.weinstein.org

293

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 293

The results, depending on which command is used, will look something similar to:

% nslookup www.weinstein.org

*** Can’t find server name for address 192.168.0.4: Timed out
Server: dns.chi1.speakeasy.net
Address: 64.81.159.2

Non-authoritative answer:
Name: www.weinstein.org
Address: 69.36.240.162

Notice that in this example the first DNS server, at 192.168.0.4, did not respond and the system had to
check a second DNS server that was listed in resolv.conf file to resolve the domain name provided to
nslookup.

How It Works
Tools such as nslookup, dig, and host query the configured nameserver of a system to determine the IP
address of a given domain name.

In the previous example, the Unix system sent a query to two nameservers that it had been configured to
retrieve information from. The first nameserver, at IP address 192.168.0.4, did not answer the query, so the
system checked with a secondary nameserver that it had been configured to know about, at 64.81.159.2.
This server not only provided information about itself but also was able to provide information about the
possible IP address of the requested domain name.

Try It Out Use Netstat
Another possible cause of a failed attempt to connect to a remote host might be the configuration of the
network interface, which can be checked using ifconfig, as previously covered, or another tool, netstat.

To check the status of the interfaces quickly, use the netstat -i command, as follows:

% netstat -i

The output for netstat is as follows:

Kernel Interface table
Iface MTU Met RX-OK X-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 4236 0 0 0 3700 0 0 0 BRU
lo 3924 0 13300 0 0 0 13300 0 0 0 LRU
ppp0 1500 0 14 1 0 0 16 0 0 0 PRU

How It Works
The netstat command symbolically displays the contents of various network-related data structures.
There are a number of output formats, depending on the options for the information presented; for the
example, in the previous section, netstat is supplying information about the network interfaces that have
been automatically configured.

eth0 1500 0 4236 0 0 0 3700 0 0 0 BRU

294

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 294

That is, each line on the table is a list of cumulative statistics regarding packets transferred, errors, and
collisions for a specific network interface. The network addresses of the interface and the maximum
transmission unit are also displayed.

Another option for netstat is to prove information about all current network connections:

% netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 www.weinstein.org:ssh dsl.chi.speakeasy.net:60371 ESTABLISHED

tcp 0 256 www.weinstein.org:ssh dslchi.speakeasy.net:1830 ESTABLISHED

Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 10 [] DGRAM 754 /dev/log
unix 2 [] DGRAM 4939915
unix 2 [] DGRAM 372659
unix 2 [] DGRAM 271499
unix 2 [] DGRAM 1784
unix 2 [] DGRAM 1606
unix 2 [] DGRAM 1535
unix 2 [] DGRAM 884
unix 2 [] DGRAM 766

In this example default display information about active networks sockets shows the protocol, receive,
and send queue sizes (in bytes); local and remote addresses; and the internal state of the protocol.

Note that on any given system at any given time there might be a few or many network connections; as
such, the output from the netstat command maybe longer or shorter then the example provided here.

As will be discussed later in the scripting section of this chapter, the data from these tools can be collected
and processed automatically. A set of scripts can collect the data from one or more tests and compare it to
that of previous tests that have been run and processed. The information can then be compiled such that a
picture of the health and status of the network and the network connection at any given time can be put
together to aid troubleshooting issues.

Answering a TCP/IP Network Request
The /etc/services file provides the mapping from port numbers to service names. A typical services
file for a Unix system will look similar to the following:

/etc/services:
$Id: services,v 1.22 2001/07/19 20:13:27 notting Exp $
#
Network services, Internet style
#
Note that it is presently the policy of IANA to assign a single well-known
port number for both TCP and UDP; hence, most entries here have two entries
even if the protocol doesn’t support UDP operations.
Updated from RFC 1700, ``Assigned Numbers’’ (October 1994). Not all ports

295

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 295

are included, only the more common ones.
#
The latest IANA port assignments can be gotten from
http://www.iana.org/assignments/port-numbers
The Well Known Ports are those from 0 through 1023.
The Registered Ports are those from 1024 through 49151
The Dynamic and/or Private Ports are those from 49152 through 65535
#
Each line describes one service, and is of the form:
#
service-name port/protocol [aliases ...] [# comment].

tcpmux 1/tcp # TCP port service multiplexer
tcpmux 1/udp # TCP port service multiplexer
echo 7/tcp
echo 7/udp
ftp 21/tcp
ftp 21/udp
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
telnet 23/udp
smtp 25/tcp mail
smtp 25/udp mail
nameserver 42/tcp name # IEN 116
nameserver 42/udp name # IEN 116
http 80/tcp www www-http # WorldWideWeb HTTP
http 80/udp www www-http # HyperText Transfer Protocol
kerberos 88/tcp kerberos5 krb5 # Kerberos v5
kerberos 88/udp kerberos5 krb5 # Kerberos v5
pop3 110/tcp pop-3 # POP version 3
pop3 110/udp pop-3
nntp 119/tcp readnews untp # USENET News Transfer Protocol
nntp 119/udp readnews untp # USENET News Transfer Protocol
ntp 123/tcp
ntp 123/udp # Network Time Protocol

As you can see, port 80 in /etc/services points to the service name called http, which refers to the
protocol that a daemon listing to port 80 will need to handle.

In many cases, on a Unix system, a daemon called inetd is designated to manage the various application
that will handle inbound requests for a network service. The inetd configuration file, /etc/inetd.conf,
lays out precisely what action needs to be taken for a given service in /etc/services.

inetd
One of the many processes started at boot time by init is inetd, a long-running daemon that keeps a close
watch for incoming network connections. When it senses incoming network traffic, it checks the incom-
ing port, consults /etc/services to get the service name, and then reads its own configuration file,
/etc/inetd.conf, to determine what process to start to handle the incoming connection:

$FreeBSD: src/etc/inetd.conf,v 1.69 2004/06/06 11:46:27 schweikh Exp $
#
Internet server configuration database

296

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 296

#
Define *both* IPv4 and IPv6 entries for dual-stack support.
To disable a service, comment it out by prefixing the line with ‘#’.
To enable a service, remove the ‘#’ at the beginning of the line.
#
ftp stream tcp nowait root /usr/libexec/ftpd ftpd –l
#ftp stream tcp6 nowait root /usr/libexec/ftpd ftpd –l
#ssh stream tcp nowait root /usr/sbin/sshd sshd -i -4
#ssh stream tcp6 nowait root /usr/sbin/sshd sshd -i -6
telnet stream tcp nowait root /usr/libexec/telnetd telnetd
#telnet stream tcp6 nowait root /usr/libexec/telnetd telnetd
#shell stream tcp nowait root /usr/libexec/rshd rshd
#shell stream tcp6 nowait root /usr/libexec/rshd rshd
#login stream tcp nowait root /usr/libexec/rlogind rlogind
#login stream tcp6 nowait root /usr/libexec/rlogind rlogind
finger stream tcp nowait/3/10 nobody /usr/libexec/fingerd fingerd –s
#finger stream tcp6 nowait/3/10 nobody /usr/libexec/fingerd fingerd –s
#exec stream tcp nowait root /usr/libexec/rexecd rexecd

In this new example, one can see that three entries are active and the rest have been disabled with a pre-
ceding comment (#). The three active ports are an application at /usr/libexec/ftpd, which will be
invoked by root to answer any TCP requests on the ftp port, defined in the /etc/services file in the
previous example as port 21. The same can also be said about the entry for telnet and finger.

The advantage to inetd managing these ports and applications is that only one dedicated program needs
to manage a single network connection at a time. The advantage is clear: The daemons themselves are
simpler to code, and the general Unix toolbox philosophy of tying small programs together using input-
output pipes is usefully applied.

Notice, however, that unlike the previous example, this example has no entry for an application to handle
HTTP requests on port 80. That is because, unlike FTP or TELNET, the Apache Web Server — the most
common application on Unix for handling HTTP requests — runs in a standalone mode outside of inetd,
in which it handles the traffic for the HTTP port on its own.

HTTP traffic is handled outside of inetd because there is a trade-off with using a generic Internet dae-
mon such as inetd. Starting up an executable on Unix is typically an resource-expensive operation, using
CPU, memory, and disk access that could be used by other applications at the same time; often, it is
more expensive than actually running the program once it has been invoked. Therefore, it is important
to consider the type of traffic the network service will incur. If connections are relatively infrequent but
take much effort to process, then an inetd-based implementation is appropriate because it relegates the
network code to inetd and allows the application to worry about the proper procedure and resources for
handling the request. If, however, the frequency is high, such as the frequency of requests for a popular
Web site, a standalone implementation is better.

Network Management Tools
As wonderful as the thought may be, computers are not completely independent systems that have
enough knowledge to look after themselves and fix any problems that may creep into the system from
time to time. Computer systems are, however, complex systems with interlocking components that

297

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 297

interact in expected and unexpected ways. Not matter what kind of computer system is in use, be it a
personal desktop system or a cluster of servers handling complex calculations, the job of making sure
that computer systems are up and running will fall into the hands of a system administrator.

Additionally, many programs and services these days require network access of some sort. In many
cases a network administrator holds court on making sure the network is operational and the computer
systems in need have the proper access. In some cases the duties of these positions fall solely on one per-
son, who may or may not be formally trained in dealing with the issues at hand.

No matter what the background or skills of the administrator in question, the fundamental goal is to
keep the system running as smoothly as possible with the minimum amount of inconvenience to the
users who are dependent on the system. Luckily, there are several Unix tools that make network man-
agement easier for everyone.

Tracking the Performance of a Network with Traceroute
There are a number of tools that system and network administrators depend on; this section will take a look
at one called traceroute and show how, in combination with other tools such as AWK, shell scripting, and
cron, a administrator can keep routine performance of the network connection on a Unix-based system.

Try It Out Use Traceroute
At the command line, enter the following:

% traceroute www.yahoo.com

The results will look something like this:

traceroute to www.yahoo.akadns.net (66.94.230.38), 30 hops max, 40 byte packets
1 192.168.0.1 (192.168.0.1) 0.8 ms 0.517 ms 0.383 ms
2 er1.localisp.net (66.42.138.1) 13.613 ms 12.664 ms 12.954 ms
3 220.ge-0-1-0.cr2.localisp.net (69.17.83.153) 12.741 ms 10.753 ms 12.042 ms
4 exchange-cust1.chi.equinix.net (206.223.119.16) 35.405 ms 28.537 ms 27.729 ms
5 ae0-p803.pat1.pao.yahoo.com (216.115.98.13) 69.158 ms 68.504 ms 68.886 ms
6 ge-0-0-2.msr1.scd.yahoo.com (66.218.64.134) 68.871 ms ge-1-0-
2.msr1.scd.yahoo.com (66.218.82.193) 76.226 ms ge-0-0-2.msr1.scd.yahoo.com
(66.218.64.134) 69.488 ms
7 vl42.bas1-m.scd.yahoo.com (66.218.82.226) 70.22 ms unknown-
66-218-82-230.yahoo.com (66.218.82.230) 69.481 ms vl42.bas1-m.scd.yahoo.com
(66.218.82.226) 70.71 ms
8 p7.www.scd.yahoo.com (66.94.230.38) 69.576 ms 70.754 ms 70.517 ms
%

How It Works
The Internet and other computer networks work by routing packets of information between computers
from the origin to the destination. Think of looking up package information from the tracking system of
a large shipping company. Depending on the type of shipping method (overnight, two-day, etc.) the
package will move from one shipping point, or hub, to the next in time to arrive at the destination point
on schedule. In theory, one can track the time it took the package to move from one hub to the next, as
well as the over all shipping time.

298

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 298

This is how traceroute works, tracking the time and route it takes information to pass between the large
and complex aggregation of network gateways or hubs. The only necessary parameter is the destination
host name or IP number.

Of course, use of traceroute and other networking tools such as ping and nmap is not to be taken lightly.
Administrators and users should limit their use of these tools to networks they look after. Using these tools
on networks maintained by others, especially heavy use, is considered antagonistic because these tools can
be used in a malicious manner as well as a helpful one.

In any case traceroute attempts to trace the route a networking packet would follow to some host com-
puter and then listen for a reply from the various hubs on the route.

The results from traceroute provide data as to what route was taken and how long, in milliseconds, it
took to reach each point on three different tries. The first line of output is information about the trace:
the target system, the system’s IP address, the maximum number of hops (connections) that will be
allowed, and the size of the packets being sent.

traceroute to www.yahoo.akadns.net (66.94.230.38), 30 hops max, 40 byte packets

The following lines denote each hub, system, or router, in the path between the two points. Each line shows
the name of the system, as determined from DNS records, the system’s IP address, and three round-trip
times in milliseconds.

exchange-cust1.chi.equinix.net (206.223.119.16) 35.405 ms 28.537 ms 27.729 ms

The round-trip times provide information about how long it took a packet to get from the beginning point
to that specific location and back again. This time is known as the latency between the two systems. By
default, three packets are sent to each system along the route, so we get three times.

Sometimes, a line in the output may have one or more times missing, with an asterisk where it should be:

exchange-cust1.chi.equinix.net (206.223.119.16) 35.405 ms * 27.729 ms

In this case, the machine is up and responding but was unresponsive for one of the test packets. This does
not necessarily indicate a problem; in fact, it is usually normal, and just means that the system discarded
the packet for some reason.

However, a trace may end in all timeouts, like this:

4 exchange-cust1.chi.equinix.net (206.223.119.16) 35.405 ms 28.537 ms 27.729 ms
5 ae0-p803.pat1.pao.yahoo.com (216.115.98.13) 69.158 ms 68.504 ms 68.886 ms
6 * * *
7 * * *
8 * * *

In this case, a little more concern is justified because it means that the target system could not be reached.
More accurately, it means that the packets could not make it there and back; they may actually be reaching
the target system but encountering problems on the return trip. The concern here is that this is possibly due
to some kind of problem. However, it may also be perfectly normal, depending on the target system; many
administrators intentionally block tools such as traceroute from further access as a security measure.

299

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 299

Firewalls
As briefly mentioned earlier in the chapter, a firewall is a network device designed to block or filter network
traffic between machines on a private network and the outside network at large, and it might not allow
ICMP traffic to pass. Simply put, a firewall intercepts any network traffic going to and from the machines
behind the firewall and, depending on a set of predefined rules, decides whether or not to permit that traffic.

Rules for a network, which are determined and configured by a network administrator, can be very broad,
very specific, or somewhere in between. For example, a network administrator can decide to block all FTP
requests from outside machines to any possible FTP servers on the internal, private network. FTP can be a
security risk because it transmits username and password in clear text for any network device to read. Or
the network administrator might be concerned that a known weakness in FTP server software could be
used to compromise an internal system. In any case, the administrator has decided to keep outside system
from locating the internal FTP server and can create a rule to block all incoming traffic for FTP.

However the administrator might want to allow a limited number of machines from a remote network to
have access to FTP servers in the private network. If the administrator knows the IP subnet for the remote
office, he or she can set the firewall to allow connections only from that subnet. The administrator can also
limit things even further, allowing access from only a specific list of machines based on their IP address.

But that’s not all a firewall can do. Systems behind the firewall can, at any given time initiate outbound net-
work traffic. That traffic again must pass through the firewall before it can be seen by the outside world. Thus
the firewall can be also be configured to allow or deny traffic to a set of destination IP addresses as well.

In this way a network administrator can control what information is provided about a private network,
control what critical business or personal information is shared, and limit the potential risk an internal
system or user might encounter by accessing a remote host that as been determined to be off-limits by
business, security, or personal policy.

Routinely Checking Network Latency
The time it takes for data to complete a round-trip on the network is an important number to many network
administrators. The latency on a network can affect the speed of important network services such as DNS
or higher level applications such as a corporate Web site. Knowing the normal performance of the network
allows the administrator a working base for troubleshooting any issues that may occur. Moreover, the
collected data can provide information on network traffic patterns and can help in providing benchmarks
for improving performance.

Try It Out Process Traceroute Data with AWK
1. In vi, create a file called mean.awk with the following contents and save the file:

/^ *[0-9]/ {
trottime = 0; attempts = 0;
for (field = 5; field <= NF; ++field) {
if ($field == “ms”) {
trottime = $(field - 1) + trottime
attempts = attempts + 1
}
}
if (attempts > 0) {
average = trottime/attempts

300

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 300

printf “Point: “ $2 “, Average Latency: “ average “\n”
}
}

2. Next, create a shell script called mean.sh and enter the following:

#! /bin/bash
run traceroute and parse the data with mean.awk
traceroute www.yahoo.com > trace_results.data
awk -f mean.awk trace_results.data

3. Finally, with the command crontab –e, put the following entry in a local crontab file to enter
the automation for the shell script:

run our shell script for testing the network
* */12 * * userid cd ~/bin; ./mean.sh | mail –s “Network Data” userid

How It Works
First, the AWK script will evaluate each line of the trace_results.data file that contains any numeral.
This is defined in the regular expression in the first line of the file.

/^ *[0-9]/

Next, two variables, trottime and attempts, are set to zero, after which a control loop using the for
statement is defined.

for (field = 5; field <= NF; ++field) {

The loop conditions first define a variable named field and a value of 5. Why 5? Take a look at the out-
put of traceroute:

ae0-p803.pat1.pao.yahoo.com (216.115.98.13) 69.158 ms 68.504 ms 68.886 ms

The fifth field is where the data that the script is interested in, the time results, begins. (Well, not really,
the fifth field is actually one field past the first time result, but not to worry!) Remember, the default
delimiter is a blank space.

The next condition is the test condition. Is the value of field on the current iteration of the loop less than
or equal to the total number of fields for the current line that is being evaluated? The final condition is
that, at the end of each loop iteration, the value of field is incremented by one.

Within the loop, the first line is another conditional statement: If the value of the variable field is equal to
“ms”, continue on to the next set of commands (remember, in the first iteration of the loop this will be
true because the fifth field of the line will contain the value “ms” that tails the first-time value. Note that
to test a variable to see if it equates to the test condition, two equal signs are run together (==). If only
one equal sign is used, value is assigned to the variable and this if statement will always test true.

If the test condition is true, we step back one field, $(field -1), and add that value to the current value of
trottime and increment the value of the attempts variable. When all the data within the line is collected,
and the limiting conditions for the loop have been reached, the script moves on the next part — calculating
an average and printing the data.

301

Unix Networking

19_579940 ch16.qxd 3/21/05 6:10 PM Page 301

Again an if condition is put into place; why print data if there are no results to print? If there is data,
then the average is calculated and the summary of data for that line is printed.

if (attempts > 0) {
average = trottime/attempts
printf “Point: “ $2 “, Average Latency: “ average “\n”
}

The rest of the items, the way the shell script works, and the crontab entries are covered in previous chapters.

There is one problem with automating this or other similar tasks. Running a tool such as traceroute sends out
packets that will affect the time of other packets of data on the network. Because of this impact on the network,
it is unwise to use traceroute during normal operations or from automated script if it is truly unnecessary. Even
if it is necessary, it should be used sparingly; the preceding example invokes the shell script only twice a day.

Summary
The key to all of these operations is that the data has some kind of structure. Consider a filing cabinet that
consists of multiple drawers, with each drawer holding a certain set of contents: project-related documents in
one drawer, employment records in another. Sometimes drawers have compartments that allow different
kinds of things to be stored together. These are all structures that determine where things go, that are used
when it comes to sorting the papers that will be placed within, and that determine where things can be found.

❑ TCP is the transport-layer part of the TCP/IP protocol.

❑ IP is the network protocol actually charged with transmitting data between hosts.

❑ TCP/IP networks have a topology that allows them to be subdivided into subnetworks and pro-
vides proper methods for routing information within and between networks and subnetworks.

❑ Domain names provide an alphanumeric mnemonic for locating networks and hosts.

❑ DNS is a network service that provides for translating domain names into IP addresses.

❑ Ifconfig is the tool for configuring network cards and can be fed static or dynamic information.

❑ Tools such as netstat, ping, and nslookup can provide information about the performance of the
network.

❑ Data from system tools such as traceroute, which provide information about the performance of
a network between two points, can be processed by AWK to provide information and help
administrate a system or network.

❑ AWK can be combined with other tools, such as a shell script, to complete and manage a complex task.

Exercise
Create a shell script that is executed every 2 hours and use the ps command generates a report detailing
what processes are active and how many CPU resources they are using.

302

Chapter 16

19_579940 ch16.qxd 3/21/05 6:10 PM Page 302

17
Perl Programming for Unix

Automation

Perl is a high-level, object-oriented programming language that supports many programming concepts
found in languages such as C and C++. Moreover, for many Unix system administrators, Perl is the tool
they depend the most on when it comes to getting the job done.

This chapter introduces the Perl language, the benefits of the language, how it fits into the Unix system
administrator’s tool chest and, most importantly, how to put Perl to use by writing and troubleshooting
Perl scripts.

The original development goals for Perl, an acronym for Practical Extraction and Report Language,
focused on developing an interpretive scripting language for file and text manipulation facilities.
From this it has found a wide base of users who find it particularly well-suited for tasks involving
quick prototyping and system management. Perl is also used in many cases as a bridge between
systems by providing programming tools for bringing together a wide variety of applications, mak-
ing Perl especially popular with programmers, system administrators, mathematicians, journalists,
and even business managers.

Perl’s open distribution policy and large support base of fellow users has also helped the popular
rise of the language and its interpreters designed to process Perl syntax on various platforms. But it
is various Unix systems, such as FreeBSD, Linux, and Solaris, that have really taken in the standard
Perl library modules and documentation.

The following exercise lets you try out a little Perl to get started.

Try It Out “Hello World” in Perl
1. Use a text editor to create a file called hello.pl with the following contents:

#!/usr/bin/perl -w
Classic “Hello World” as done with Perl

print “Hello World!\n”;

20_579940 ch17.qxd 3/21/05 6:10 PM Page 303

2. After saving the file and quitting the editor, change the permissions on the file and run the fol-
lowing script:

% chmod 755 hello.pl
% ./hello.pl
Hello World!

How It Works
Like a shell script, the first line in this example tells the Unix system how to run this script, using the
Perl interpreter. In most Unix systems, such as the Mac OS X system the scripts in this chapter were writ-
ten and tested on, the Perl interpreter can be found at /usr/bin/perl; however, this is not always the
case. If, when executing this example script, an error such as “command not found” or “bad interpreter:
No such file or directory” was displayed instead of the expected “Hello World!” chances are the Perl
interpreter is located elsewhere on the system.

To quickly locate or verify where the Perl interpreter is, use the which command as follows:

which perl
/usr/bin/perl
/usr/bin/perl:

In any case, besides providing a location for where the Perl interpreter can be found, this line allows
options for how to invoke Perl:

#!/usr/bin/perl -w

In the case of the “Hello World” example, the -w switch communicates to the Perl interpreter that it
would provide an additional level of reporting of warnings along with critical warnings or fatal syntax
errors that are encountered while processing the script into machine code.

Another method for making sure Perl provides a robust collection of warning messages, and one recom-
mended for the latest version of the language, is to use the following method, instead of the -w switch:

#!/usr/bin/perl
use warnings;

As with other scripting examples that have been discussed, Perl provides a method for entering comments
that document what and how the script works. Any line prefaced with a pound (#) symbol denotes the line
as a comment line within the file. Each comment line must be preceded by a #, and must be on a line by
itself, as in the second line of code:

Classic “Hello World” as done with Perl

As discussed in Chapters 11 and 13, comments are a useful feature for any configuration or script file and
need to be used to the fullest extent possible. Comments must at least communicate information about
who created or modified an entry in the file, when the entry was added or modified, what commands are
used, what files the commands require for proper execution, who to contact if something goes wrong, and
why and how the entry was added or modified.

Also remember that documentation is only effective if it remains current. The final line in the example is
the main body of the script, the print function that outputs the text within the double quotation marks.

304

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 304

print “Hello World!\n”;

As with other scripting environments, this script uses the \n escape sequence to communicate that at the
end of this text string a new line is to be provided at standard out.

Perl’s Advantages
As noted, Perl is an interpreted language optimized for string manipulation, system integration, and
prototyping complex applications. Perl is helpful with system administration and system integration
because it has built-in functions that are the same as or equivalent to many Unix commands. Moreover,
Perl has a syntax that is easy to pick up on the fly, because it incorporates syntax elements from the
Bourne shell, csh, AWK, sed, grep, and C.

Perl is regarded by many as something of a grab bag of features and syntax. As with other Unix tools,
Perl has a powerful regular expression engine built directly into its syntax. For those who find regular
expressions difficult to understand and use, this can be a detriment.

Another example pro (or con) can be found in Perl’s versatility in permitting the use of different pro-
gramming styles (procedural, functional, and object-oriented) all within in the same script. Again, the
difference as to whether you feel Perl is helpful or not lies in whether the organic evolution of the lan-
guage, and its “There’s more than one way to do it” approach is considered a virtue or a vice.

A final pro (or, again, con) can be seen in the fact that Perl is an interpretive language. For Perl this
means that the interpreter translates the high-level syntax of the language into an intermediate form,
line-by-line, on-the-fly, right before execution. In contrast, a compiler translates high-level instructions
directly into machine language before the application is ever executed.

The advantage of an interpreter, however, is that it does not need to go through the compilation stage
during which machine instructions are generated. Thus Perl is a strong candidate for prototyping pro-
posed applications before undertaking the task in a common compiled language such as C or C++. This
means the processes and logic of the application can be understood and fine-tuned before formal coding.

However, the Perl interpreter process is a resource-consuming process because the interpreter is process-
ing high-level code on-the-fly. That is, unlike a C or C++ compiler, the Perl interpreter has no time to
optimize the low-level code before execution, resulting in a performance hit for intense scripts.

In any case, compared to other interpretive programming environments discussed in this book, such as a
shell script, Perl has a definite advantage.

Useful Perl Commands
It can take years to master all of the features of Perl, if in fact they can all be mastered. Thus a single
chapter is not going to turn you into a Perl guru. A few fundamentals, however, can go a long way, so
the following sections detail some of the basics of Perl.

305

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 305

Variables
You’ll recall from Chapter 9 that the AWK programming language is a typeless language. That is, with
AWK you do not declare what type of content the variable will contain. Perl is the same; you do not
declare a variable’s type before putting the variable to use. Variables can be created arbitrarily and are
defined at creation. All scalar variables — that is, all variables that contain one element — are preceded
by the dollar sign ($). The following are valid variables and declarations:

$name = “Paul”;
$age = 29;
$Where_to_find_him = ‘http://www.weinstein.org’;

Perl also allows for variables with multiple elements, which are defined by the use of the at sign (@).

@authors = (“Paul”,”Joe”,”Jeremy”,”Paul”);
@list = (1,2,3,4);

Array elements can also be dereferenced using $ and the element number. That is, you can access the
name “Paul” in @authors array in the following manner:

$authors[4];

Perl also allows associative arrays or hashes. A hash is similar to an array, except instead of a numeric
index, a hash uses alphanumeric indexes. The index is usually referred to as a key, and hashes are speci-
fied with a percent sign (%), as in the following:

%person = (
name => ‘Paul’,
age => ‘29’,
url => ‘http://www.weinstein.org’,
);

Here the hash called person has three alphanumeric indexes or keys: name, age, and url. The values for
these three indexes are ‘Paul’, ‘29’, and ‘http://www.weinstein.org’, respectively.

Operators
Perl allows for the same basic mathematical operators that all other languages have:

Addition
$result = 5 + 5;
$a = 5;
$b = 6;
$result = $a + $b;

Subtraction
$result = 5 - 5;
$a = 5;
$b = 6;
$result = $a - $b;

Multiplication
$result = 5 * 5;

306

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 306

$a = 5;
$b = 6;
$result = $a * $b;

Division
$result = 5 / 5;
$a = 5;
$b = 6;
$result = $a / $b;

In all of these examples, the results of the mathematical operations are assigned to the variable result,
which can then be sent out using the print function or used later in the script as a test condition for
controlling a branch of code. In the case of the first addition example, the value that would be found in
$result is 10, the value of 5 plus 5. In the second addition example, the value of $a is added to the
value of $b, with the sum being assigned to the variable result. Since $a is set to 5 and $b is 6, the value
in $result will obviously be 11.

Basic Functions
Functions are a fundamental part of most programming languages, often used as an operator to produce
a change in a variable or return a value that can be assigned to a variable. Perl provides a number of use-
ful functions for the manipulation of text, and while the following list is by no means comprehensive, it
does cover the functions that can usually be found in just about any Perl script.

print
The print function outputs a string to standard out or to some other stream such as a pipe or a file. It
has the same control characters as you find in many other languages, such as the print functions covered
in the discussion on AWK in Chapter 9.

print “Hello Again\n”;

As the preceding example (taken from the simple Hello World script) shows, the format to print to standard
out is straightforward. To print to a file that has a file handler called FILE, see the discussion on writing and
appending to a file a bit later. The print statement looks similar to this example:

print FILE “Hello Again\n”;

If you want to print out a variable in a string of text, you can join the variable’s contents to a string statement
with the dot (.) character, as shown in the following:

print “How are on this day, the “ . $date . “?\n”;

chomp, join, and split
The functions chomp, join, and split are three key functions for manipulating data in variables in Perl.
For example, given a variable, be it a scalar or an array, chomp eliminates the newline character(s) at the
end of the variable. chomp also returns the number of newline characters deleted.

chomp in action for a scalar and an array
chomp $name;
chomp @authors;

307

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 307

The join function joins two separate strings in a single string, just as the dot operator does. Unlike the
dot operator, however, an argument to the join function can include a value for a field separator to
delimit the combined strings.

joining a number of strings together with a colon delimiter
$fields = join ‘:’, $data_field1, $data_field2, $data_field3;

Thus, in this example of the join function, the values in $data_field1, $data_field2, and $data_field
will be combined; only the colon between each string will separate each string. If, for example, the variables
contained Paul, Joe, and Craig, the $fields variable would contain the string Paul:Joe:Craig.

The opposite of the join function is the split function. split scans a string and splits it based upon a
delimiter given as an argument, breaking the string into a group of strings, as the following code illustrates:

splitting a string into substrings
($field1, $field2) = split /:/, ‘Hello:World’, 2;

splitting a scalar and creating an array
(@fields) = split /:/, $raw_data;

In the first split example, the function will split the string Hello:World at the colon. That is, the text before
the colon, Hello, will go into the first variable and World, the text after the colon, will go into the second.
Notice the trailing number 2 in the function arguments. That is a limit, specifying that split is to divide the
string into no more than 2 fields. A limit is not necessary, because it may not always be known ahead of time.

The real power of the split function is its capability for pattern matching with regular expressions:

split raw_data at any point in which a number is located and put into fields
(@fields) = split /[^0-9]/, $raw_data;

Compare this new example of the split function to that of the previous two. In the first two examples, the
split function is analyzing a string. In the first example the string is the bare “Hello:World”; the second is
the value of the variable $raw_data. In both examples the split function is dividing the string whenever the
colon is detected.

However, in this third example the split function is dividing up the value in $raw_datawhenever a
numeric, within the range of 0 to 9, is found and adding each group into the array fields. The power here of the
regular expression is that even if the programmer has no idea what the format is of $raw_data, say the input
from a file with no set field separator read into the variable, the programmer can strip out meaningful data.

open, close, opendir , readdir, and closedir
The functions open, close, opendir, readdir, and closedir are all used by Perl to access the under-
lying file system on Unix.

The open function, for example, opens a file given to it as an argument. The resulting file handler is then
used to handle the contents of the file, be it for reading, appending, or writing.

open the file and slurp its contents into an array and then close the file.
open(FILE, “/etc/passwd”);
@filedata = <FILE>;
close(FILE);

308

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 308

In this example, the file handler for the file /etc/passwd is FILE. After the file has been opened, the file
handler dumps the contents, or slurps the file, into an array. Then the file is closed using the close function.
The following “Try It Out” section shows you how to use some of the functions described here.

Try It Out Opening Files and Directories in Perl
1. Use a text editor to create a file called file.pl in your home directory with the following contents:

#!/usr/bin/perl -w
Create a file that will have a directory listing of user’s home dir

print “About to read user’s home directory\n”;
open the home directory and read it
opendir(HOMEDIR, “.”);
@ls = readdir HOMEDIR;
closedir(HOMEDIR);

print “About to create file dirlist.txt with a directory listing of user’s
home dir\n”;
open a file and write the directory listing to the file
open(FILE, “>dirlist.txt”);
foreach $item (@ls) {

print FILE $item .”\n”;
}
close(FILE);
print “All done\n\n”;

2. After saving the file and quitting the editor, change the permissions on the file and run the fol-
lowing script:

% chmod 755 file.pl
% ./file.pl

3. Once the script prints “All Done” locate the file dirlist.txt and display the contents of the
file using cat. The output will look something akin to the following:

% cat dirlist.txt
.
..
.bash_history
.bash_profile
.bashrc
Applications
Desktop
Documents
Downloads
file.pl
Library
Movies
Music
Pictures
Public

309

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 309

How It Works
The opendir function opens the directory named in the function argument and creates a file handler for
the opened directory, which is also given in the function’s argument.

opendir(HOMEDIR, “.”);

In the “Try It Out” example, the opendir function is opening the current directory, as denoted by the dot
(.) with double quotes (“). The dot represents the current directory in UNIX file systems, with two dots
(..) denoting the directory one level up. The opendir function can also take absolute directory paths as an
argument, besides this example of a relative directory path. But be careful with relative paths, since these
paths are relative to where the script file is located on the file system, not where the user or application
invoking the script is working in.

@ls = readdir HOMEDIR;
closedir(HOMEDIR);

Once the directory is opened and a file handler has been assigned to it, the readdir function can be
used. This function takes the argument of a handler that represents the directory to be read and sends
entries of the directory, in the case of this example, to @ls.

As covered in discussing the open and close functions for files, the closedir function closes the direc-
tory noted in the file handler, in the example called HOMEDIR, which was originally created using the
opendir function.

In other words, the opendir, readdir, and closedir functions are similar to the open and close functions
for files:

open a file and write the directory listing to the file
open(FILE, “>dirlist.txt”);
foreach $item (@ls) {

print FILE $item .”\n”;
}
close(FILE);

The difference is that with files, there is no read, write, or append function. To write to a file, one right angle
bracket, (>) is used to denote that a new file is to be created and written to. To append to an existing file, two
right angle brackets (>>) are used. To simply read a file, no right angle brackets are used.

Because this example takes multiple entries that have been read from the directory and assigned to an
array, a controlled loop, foreach, is used to process each element in the array, @ls assigns it to a variable,
$item, and then prints to the file. The foreach loop and other controlled branches of code are covered in
the section called “Loops and Conditionals.”

Note that, as mentioned about the print function, the file handler needs to be provided such that it
knows to print to the file stream and not to standard out.

my and local
The my and local operators declare a variable to be of limited scope, such as a variable for a specific
purpose within a subroutine or loop. my declares a new variable to exist within a limited sphere such as
a loop; local declares an existing global variable or variables to have values that are to be limited to an
enclosed block of code, again such as a loop.

310

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 310

Global variable $name is given a name
$name = Paul

Enter our loop
foreach (@filedata) {

declare a new variable for just the loop
my $current_file_file;
create a local version of name to temporarily assign values within the
loop to
local $name

...
}

In the example code, there are two variables that have been defined three different times: $name and
$current_file_file. The variable $name is first declared outside of any loop or subroutine and is
assigned a value. This is known as a global declaration. In this case the value of the global variable can be
used at any point within the blocks of code that follow, be it a loop, subroutine, or some other expression.
The variable $current_file_file, however, is not a global variable. The my operator declares that this
variable, $current_file_file, is limited in scope to the block of code that the variable was declared in,
in this case the foreach loop, and once the block of code has been processed, the variable and its value
will no longer exist. That is, once the loop is completed, the variable $current_file_file will no longer
exist and the memory that was assigned to it will be freed and used for some other need.

The local operator is slightly different compared to my. As with my, local limits the scope of the variable
to a specified block of code; in the case of the preceding example, the foreach loop. However, unlike my,
the local operator changes the scope of an existing variable. That means in the working example going
into the foreach loop the variable $name is global and has the value Paul. However, once the scope of the
variable is changed using the local operator, the variable can be used within the loop to hold a different
value. Once the block of code ends, the variable returns to its global nature and regains the value of Paul.

Using global- and limited-in-scope variables can help manage memory resources, and their use is highly
recommended when coding scripts that may make heavy use of the system’s hardware resources, such
as processing large text files.

Loops and Conditionals
Speaking of loops, what good would Perl be without a strong set of commands for creating blocks of
code that can be executed on one or more sets of conditions?

while
Before any Perl code within the loop, defined by the beginning and closing brackets, can be executed,
the conditions for how the loop will run need to be defined. That is, before any loop can be defined and
entered, any condition that returns a true or false response needs to be defined, otherwise the loop will
run indefinitely and the program will never end.

while ($counter < 10) {
print $counter . “\n”;
$counter++;

}

For example, the previous code sets up a common method for controlling a loop by use of a counter.
While the value of the variable $counter is less than 10, the loop will run. Note the last line within the
block of code for the loop:

$counter++; 311

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 311

This line increments the value within $counter by one and is a common syntactical shortcut for pro-
grammers. That is, it has the same effect as writing the following:

$counter = $counter + 1;

do...while
The do...while loop is similar to the while loop, except the test condition is checked at the end of the
loop, not before; thus, it runs through the block of code within the loop at least once.

do {
print $counter . “\n”;
$counter++;

} while ($counter < 10);

Thus, compare the do...while example to the previous example with the while loop. In the while loop the
condition for the $counter variable is at the beginning of the loop, whereas here the condition is tested at the
end. This means that, in the while loop example, if the $counter is greater than 10 before the loop is encoun-
tered, the loop will never be executed since it fails the test even before the loop starts. With the do...while
loop, however, even if the $counter is greater than 10, the block of code within the loop will be executed at
least once since the test condition does not come until after the block of code for the loop has been entered.

foreach
The best way to traverse an array is to use the foreach loop to run through its elements. For example, the
following loop will print out the elements in the array called authors by passing each element into
the scalar temp as each iteration is started, until each array element has been printed.

foreach $temp (@authors) {
print $temp . “\n”;
}

if...else
The venerable if...else commands can be used to test conditions and optionally perform commands.
The basic syntax can be seen in this example:

if ($name eq ‘Paul’) {
print “Hi Paul\n”;
} elsif ($name eq ‘Joe’) (
print “Hi Joe\n”;
} elsif ($name eq ‘Jeremy’) {
print “Hi Jeremy\n”;
} else {

print “Sorry, have we meet before? “;
}

The example demonstrates a number of test conditions to be tested; if a condition is true, then the block
of code following the test is executed. Thus if the value of the variable $name is equal to (eq) Paul the
one-line print statement within the brackets is executed. If not, the next test condition — is the value of
$name equal to Joe— is tested. If all the tests fail, the last line within the final else block is executed.

312

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 312

More Perl Code Examples
The best way to understand how Perl commands work is to take a working script apart. The following
“Try It Out” example gives you an opportunity to do just that.

Try It Out Check Input from Standard In
1. With a text editor, enter the following script, save it as check.pl, and change the permissions to

allow the script to be executed.

#!/usr/bin/perl -T
check.pl
A Perl script that checks the input to determine if
it contains numeric information

First set up your Perl environment and import some useful Perl packages
use warnings;
use diagnostics;
use strict;
my $result;

Next check for any input and then call the proper subroutine
based on the test
if (@ARGV) {

If the test condition for data from standard in is true run
the test subroutine on the input data
$result = &test;

} else {
else the test condition is false and you should run an error routine.
&error;

}

Now print the results
print $ARGV[0].” has “.$result.” elements\n\n”;
exit (0);

sub test {
Get the first array element from the global array ARVG
assign it to a local scalar and then test the local variable
with a regular expression
my $cmd_arg = $ARGV[0];
if($cmd_arg =~ m/[0-9]/) {

return (‘numeric’);
} else {

There was a error in the input; generate an error message
warn “Unknown input”;

}
}

sub error {
There was no input; generate an error message and quit
die “Usage: check.pl, (<INPUT TO CHECK>)”;

}

313

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 313

2. Run the script at the command line with various arguments or totally without arguments, such as
what follows. Note the various lines of output from the script depending on what input argument
is supplied:

% ./check.pl
Usage: check.pl, (<INPUT TO CHECK>) at ./check.pl line 41.
%

% ./check.pl 42
42 has numeric elements

%

% ./check.pl h2g242
h2g242 has numeric elements

%

% ./check.pl hg
Unknown input at ./check.pl line 35.
hg has 1 elements

%

How It Works
To invoke the Perl interpreter note, this example uses a -T switch, which runs Perl in a taint mode:

#!/usr/bin/perl -T

If any script written in Perl is to be used by a collection of users, or if the script originated from an out-
side source, taint mode makes sure Perl doesn’t implicitly trust any input supplied by a user running the
script. That is, when used in taint mode, the Perl interpreter assumes that all user input is tainted, or
potentially malicious, and places restrictions on the actions that the script may perform on that input.

Perl uses a special set of rules that limit the actions that may be performed on tainted data. For example,
tainted data may not be used in Perl functions that interact directly with the underlying system. When
the interpreter encounters an action that uses tainted data in a manner it considers unsafe, it simply halts
execution with an error. It’s then up to the system administrator to troubleshoot the code (if the script
came from an unknown source) and determine what changes are necessary to make the code safe, or
double check what input the user provided to create such a issue.

Most important of all, you must not view taint mode as a catchall for security issues with Perl scripts.
While taint mode will help prevent buffer-overflow vulnerabilities, it cannot detect all possible forms of
malicious input, such as an SQL command to drop a database table if the script in question interacts
with a backend database.

The next section of code sets up a few other environmental conditions for the Perl interpreter to provide
while executing the example script:

First set up your Perl environment and import some useful Perl packages
use warnings;
use diagnostics;
use strict;
my $result;

314

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 314

First, the use function imports some Perl code into the current script. The source of this code is the Perl mod-
ule named for the use function—use warnings imports conditions defined in a standard Perl module
called warnings, for example. Some of the warnings from the module can appear quite cryptic. This is where
use diagnostics can help. When this module is activated, the warnings generated by use warnings and
-w are expanded greatly. Of course, both of these functions are designed for use during the development cycle
and probably should be turned off after the troubleshooting has been completed since they are big modules
that you shouldn’t load for just any reason.

The use strictmodule enforces that all variables must be declared by my to keep track of their scope and
limit the memory usage to those sections of the code that only request a specific variable(s) to use. The strict
module also requires that most strings be quoted and that there are no bare words (or unquoted string text) in
the middle of the code. Finally, strict also enforces a policy of no symbolic references within the script. In
other words, strict enforces good coding practices. Yes, there is such thing as good coding practice, as show-
cased a bit later, even in a programming language that considers any and all programming styles as valid.

Finally, because the use of the strict module requires it, the one global variable for the script, $result,
is declared.

The only new elements in this if-else condition that haven’t been covered before are the @ARGV array and
the subroutine calls:

Next check for any input and then call the proper subroutine
based on the test
if (@ARGV) {

If the test condition for data from standard in is true run
the test subroutine on the input data
$result = &test;

} else {
else the test condition is false and you should run an error routine.
&error;

}

The @ARGV array contains the command-line arguments given at the invocation of the Perl script. The
script expects only one argument, so the first element in the array is the one that is of interest for testing.

Depending on the test, one of two subroutines will be entered, &test or &error. The subroutine test is
expecting to return a value and is assigning that value to the variable $result. Of course, in this exam-
ple $result is a global variable, and the assignment could be done within the subroutine test, but this
method provides an example for returning results from a subroutine in Perl:

Now print the results
print $ARGV[0].” has “.$result.” elements\n\n”;
exit (0);

The final segment of the example script’s main body prints out the results and then terminates the script
using the exit function in Perl. The exit function can return a value that can be evaluated by the Unix
command line. In this example, it returns 0, denoting true, or successful execution.

sub test {
Get the first array element from the global array ARVG
assign it to a local scalar and then test the local variable
with a regular expression
my $cmd_arg = $ARGV[0];

315

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 315

if($cmd_arg =~ m/[0-9]/) {
return (‘numeric’);

} else {
There was a error in the input; generate an error message
warn “Unknown input”;

}
}

When the test subroutine is entered, the first item of business is to delegate a local variable called $cmd_arg
and assign the value of $ARVG[0]. The next is to test the variable for any numeric values within the string:

if($cmd_arg =~ m/[0-9]/) {

The regular expression, number range between [0-9], is to be matched (m//) and is then bound (=~) to the
string in $cmd_arg for searching. If this match is true, the string numeric is returned to the point where the
subroutine was called. If it is false, the warn function prints an error message (Unknown input) that includes
the string provided to it in the standard error message along with the line number from which the warn mes-
sage was triggered. For troubleshooting and debugging, which are discussed in the next section, this is valu-
able information.

The warn function does not terminate the execution of the script. Here’s one of the example invocations
of the script:

% ./check.pl hg
Unknown input at ./check.pl line 35.
hg has 1 elements

%

The warn message is printed, but the script still exits out of the subroutine and then executes the final
print statement in the main body of the script. Note that the routine has terminated, returning a value
of 1 to be passed to the value $result, which is then printed. An if condition could be placed around
the print statement such that if $result is 1 (false in Perl, as with most Unix systems), the final print
statement would not be executed:

print $ARGV[0].” has “.$result.” elements\n\n” if $result;

That is the same as saying:

if ($result) {
print $ARGV[0].” has “.$result.” elements\n\n”;

}

The last segment of code to examine is the error subroutine:

sub error {
There was no input; generate an error message and quit
die “Usage: check.pl, (<INPUT TO CHECK>)”;

}

The die function prints a message to standard out, just as warn does; however, die then terminates the
execution of the script and goes no further. Hence the output for when the test fails to find any input
looks like this:

316

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 316

% ./check.pl
Usage: check.pl, (<INPUT TO CHECK>) at ./check.pl line 41.
%

One final note about this script should be made: This chapter has noted that Perl is an anything-goes
language. This example script can actually be executed in one line:

#!/usr/bin/perl -T

print $ARGV[0].” Has nummeric elements\n\n” if ($ARGV[0] =~ m/[0-9]/);

This one-line script will print the following output if a number is present, and nothing if no number is
matched or no input is provided:

% ./check.pl h2g2
h2g2 has numeric elements

%

Moreover, even with the strict and warnings modules, this script is valid enough to pass without any
issues, but as covered in the following section, such quick-release coding can be detrimental to many,
including you, when it comes time to troubleshoot or modify the code in question.

Troubleshooting Perl Scripts
Before a Perl script can be debugged, let alone executed, you need to validate the script’s syntax. This, of
course, will happen automatically, every time you try to execute a script. For example, if the Unix system
cannot locate the Perl interpreter in the first line of the script, the shell will return a command not found
error. Other common syntax errors include leaving the semicolon off the end of a line and putting a semi-
colon on a line where it shouldn’t be.

You can also check the syntax of any script, such as the hello.pl or file.pl without trying to execute
the script, as follows:

% perl -c hello.pl
hello.pl syntax OK
%

The -c switch tells the Perl interpreter, which is being invoked at the command line instead of in the first
line of the script, to check only the syntax of the file provided as an argument and skip executing the script.

At the command line you can also add the -w switch to turn on warnings.

Note, however, if you try this with the check.pl script, the following error will occur:

Too late for “-T” option at check.pl line 1.

This is because the -T switch, which tells the Perl interpreter to run in taint mode, needs to be provided
when the Perl interpreter is first invoked and the script environment is established. Because Perl is
invoked at the command line and not in the first line of the script in the preceding example, the inter-
preter prints the error that it is too late for the taint mode to be established because Perl is already

317

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 317

running. To avoid this message, comment out the -T switch during testing and debugging, as noted in
the following. Just don’t forget to uncomment it when all the bugs have been found!

#!/usr/bin/perl #-T

If the use strict module is included within the script, the syntax check also tests for inappropriate
scalar scoping, which goes a little beyond the normal syntactical problems that are identified.

Of course, a successful syntax check does not mean that the manner in which any given statement is
expressed will return the result intended.

The Perl debugger, on the other hand, is the tool to use to track the execution of the script itself. The
debugger is an interactive Perl environment initialized when Perl is called with the -d switch:

% perl -d check.pl

As with the previous example of the syntax check, a filename for the file containing the script to debug
needs to be provided as an argument. Because it is interactive, the next step is to use the debugger’s
commands for controlling how to step though the script to catch any bugs in question. The following
table explains these commands.

Command Description

s Executes only a single step, or line, in the script

n Steps carefully to avoid falling into a subroutine

c Continues processing until a break of some sort

r Continues running until you do a return from the current sub

w Shows a window of code around the current line

b Sets a break point (uses line number or sub name)

x Displays value of variables (including arrays and hashes)

W Sets a watch expression

T Displays a stack back trace

L Lists all the breaks

D Deletes all the breaks

R Restarts the script to test again

The commands listed in the table are used in Perl’s interactive debugging environment to control what
Perl is executing, such that the behavior of the script can be examined to locate any errors in logic.

In any case, when you run the debugger on check.pl, the first section of output is as follows:

Default die handler restored.

Loading DB routines from perl5db.pl version 1.07

318

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 318

Editor support available.

Enter h or `h h’ for help, or `man perldebug’ for more help.

main::(check.pl:10): my $result;
DB<1>

The debugger skips past the comments and such and stops on what looks like the first line of executable
code, line 10. Use w— note this is lowercase w, uppercase W is a different command — to verify where the
debugger is:

DB<1> w
7: use warnings;
8: use diagnostics;
9: use strict;
10==> my $result;
11
12 # Next check for any input and then call the proper subroutine
13 # based on the test
14: if (@ARGV) {
15 # If the test condition for data from standard in is true run
16 # the test subroutine on the input data

The w command displays a window into the code that is about to be executed. That is, it shows the line
about to be executed. The arrow symbol (==>) indicates the line that is about to be executed, as well as
the code surrounding that current line of code, thus providing perspective. To single-step through each
command line, enter:

DB<1> s
main::(check.pl:14): if (@ARGV) {

DB<1> s
main::(check.pl:20): &error;

DB<1> s
main::error(check.pl:42): die “Usage: check.pl, (<INPUT TO CHECK>)”;

DB<1>

The debugger executes the first if statement and executes the error subroutine. You can check the value
of the array to ensure that the if statement was executed correctly:

DB<1> x @ARGV
empty array
DB<1>

Sure enough, the array is empty, and the error subroutine is the correct path for the script. To test the other
branch of code within this script, you need to provide a text argument when the debugger is invoked.
Remember what this script does: It checks the input of a string of text and prints out a message based on
whether the input string contains a number or not. Because you invoked this script with no argument to the
script (only an argument — the -d switch — to Perl itself), the script branched off to the error message. Thus
if you wanted to test other branches of the script, you need to provide an input string to test these braches.

More information and one-on-one help with the Perl debugger can be found online at http://
debugger.perl.org.

319

Perl Programming for Unix Automation

20_579940 ch17.qxd 3/21/05 6:10 PM Page 319

You should now understand the basic idea of the Perl debugger. Of course, the most important piece of
information to remember when debugging or troubleshooting a script is to make sure you have a clear
mental image of the program’s actions at every major branch, with every module, throughout the debug-
ging process. When debugging a script or program, you will find that most of the logic errors that occur
do so because the program code is executing in a manner different from what you had envisioned.

Summary
Perl is a powerful Unix tool that has grown beyond its initial designs of a language for text manipulation. The
key to Perl is to understand that it can be and is many things to many people. The usefulness of Perl has
made a few people refer to it as a Swiss Army Knife or the glue and duct tape that holds the Internet together.

Because of its roots, Perl is an easy-to-learn language, and most tasks require only a small subset of the Perl
language. Moreover, understanding how Unix-based systems operate makes Perl that much easier to learn
since, while Perl can be found on many systems, Unix and non-Unix alike, Perl was originally developed and
is most closely associated with Unix. Perl is very much a part of any Unix-based system with open code, file
manipulation, and regular expressions. In addition to these topics, this chapter covered the following subjects:

❑ The nature of Perl as a powerful programming language that can step beyond the limitations of
other Unix tools such as shell scripts and AWK

❑ The pros and cons to selecting Perl as the tool to use to solve a problem

❑ Basic Perl commands and functions, such as split and join, for text manipulation

❑ An understanding of how to write and execute a Perl script

❑ Basic steps to troubleshooting a Perl script

There are a number of resources for learning more about Perl; this chapter just scratches the surface.
Good next steps include the Online Documentation of Perl at www.perl.org/docs.html and the classic
tutorial on Perl published by O’Reilly and Associates, Learning Perl. You can also consult Wiley’s Perl for
Dummies or Perl Database Programming.

Exercises
1. Write and debug a Perl script that reads the contents of /etc/passwd and outputs the contents

of the username and ID fields only.

2. Use the following examples to invoke the Perl debugger for the check.pl script example from
this chapter. Step through each line of code. What is different about each invocation?

perl -d check.pl h2g2
perl -d check.pl h2
perl -d check.pl
perl -d check.pl 42

3. Correct the check.pl script such that if a string to be tested contains no numeric elements, the
message printed by the script communicates this to the user. If “hg” is the given test string,
instead of a message that reads, “Unknown input at ./check.pl line 35. hg has 1 elements,” the
output should read “hg has no numeric elements.”

320

Chapter 17

20_579940 ch17.qxd 3/21/05 6:10 PM Page 320

18
Backup Tools

Backups — the word is discussed many times in almost any technical book you have ever read,
and with good reason. The concept is simple: Store a copy (backup) of irreplaceable or critical files
and data in a safe place in case of a problem with the primary system. Backups are by far the best
insurance policy against loss of crucial information in times of system disruptions, accidents, mis-
configurations, or malicious activities. Despite that fact, most home users and some corporate
users do not give backups the attention they deserve, often putting them second to everything
else. If there’s vital information stored in your system, however, there’s no substitute for backing
up that information. Backups are as necessary as any production issue. This chapter discusses
basic backup concepts and methods, as well as the recovery of the backup data.

Backup Basics
Effective backups require considerable planning, including deciding the how, when, and where of
your backups. The planning is all worth it the first time you have to call on your backup to restore
lost data.

Everyone makes mistakes. If you have used computers in any capacity, you surely have accidentally
deleted a file that was extremely important or lost a vital document when the power went off sud-
denly or the system rebooted with no warning. These things happen, and a backup is the insurance
policy that can make one of these occurrences go from being a devastating event to a minor incon-
venience. Most users, especially home users, store their data on their local hard drive, which allows
for extremely easy retrieval and modification of data. What happens when the hard drive fails? All
hard drives are rated to fail eventually — mean time before failure (MTBF) — and you risk losing
your important information by not regularly backing up your data to separate media.

If you are a home user, consider what it would cost you in time and money if you lost all the data
you accumulated over a 1-year period. What if you lost even 30 days of data at work? What if
everyone in your company lost their data for a 3-day period? Any of these situations could repre-
sent a serious loss of money, time, and productivity if you had no regular backups and had to
recreate all the lost data.

21_579940 ch18.qxd 3/21/05 6:15 PM Page 321

You back up your data to protect not only against hardware failure but also against other external and
internal events such as natural disasters, malicious entities destroying data, and disgruntled employees
removing information from your system — or any other incidents that could destroy that data.

Determining What to Back Up
Deciding what to back up is a time-consuming process, but well worth the effort, especially if you have
to recover information. You do not want to be the person to tell your manager that a crucial business file
can’t be restored because it wasn’t backed up. Even if you don’t manage a corporate backup system, you
don’t want to go through the trouble of backing up your files only to discover that you overlooked a crit-
ical directory or file.

You generally want to back up the entire file system. If that isn’t possible because of resource constraints
(money and/or time), you have to select the individual file systems or files that you need to back up.
At a minimum, you want to back up home directories, custom configuration files, special applications
installed and their configuration files (including license files), and any other data that, if lost, would
cause significant financial loss or cause personal or business interruptions.

User home directories are very important to back up because this is where common users do their work,
which is usually the most important work occurring on the system. Users tend to accidentally delete or
lose their data, sometimes representing weeks or months worth of work. By backing up users’ home
directories, you are ensuring that there is minimum loss of productivity when a file is lost.

When you modify configuration files, you will want to save the changes so that, in the event of a disas-
ter, you can recover that work without having to go through the process of reinitiating the configura-
tions. That will save a significant amount of time between when a system is down and when it’s brought
back up. This includes many of the files in /etc, but there are many others throughout the system that
you probably want to back up; these will vary depending on your system configuration.

Another segment of files you will want to back up are special, custom, or in-house-developed applica-
tions that are installed, including their associated configuration and license files. For instance, you will
want to back up your Oracle database because your company’s most important information could be
stored in there. These files are typically the backbone of your company’s information program, so they
should be studied carefully for backup validity and backed up on a regular basis.

You may be running a small shop or home system and determine that you don’t need to back up entire
file systems; you only need to back up your home directory that contains your important files. If this is
the case, you should still have a backup strategy — even if it’s only a small backup to a CD-ROM once a
week — so that you do not lose the work you have stored on your system.

If you can’t back up the entire system, spend time determining which files and directories should be
backed up. The time invested in investigating which files are critical to you and your system and inter-
viewing those who are knowledgeable of the system can save you many hours when restoring a
machine to production, or when recovering files for your personal use.

322

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 322

Backup Media Types
The types of media to which you back up your data are extremely important. If your medium does not
have the capacity to store all your critical data or cannot endure the time period you need your backups
for, the backups lose their effectiveness. There are many different media types to back up data, including:

❑ Magnetic tape — One of the oldest ways to back up data. It has stood the test of time and
proven to be very durable. The newest versions of magnetic tape are very fast and can store a
significant amount of data. The media and hardware required to use magnetic tape for backups
can be very expensive and difficult to set up initially. This media is well suited to long-term
storage (20 or more years). Most corporate backup systems rely on magnetic tapes.

❑ CD/DVD-ROM — A newer method (relatively speaking) of backing up data that has grown in
popularity because of the extensive availability of the hardware for multiple platforms. The
technology is growing and is generally fast while being able to store a sizeable amount of data.
The media and hardware required to use this type of backup are readily available. The long-
term durability of this type of storage has not been confirmed, but is generally thought to be
10–20 years, depending on the quality of media chosen. This is the most common backup hard-
ware for home computers today.

❑ Zip drives — An older technology losing market share because of its low capacity and slow
speed. The hardware and media is still readily available but is waning. This type of storage can
maintain data for a significant amount of time (more than 10 years).

❑ Hard drive/network backup — This type of backup is more and more common with the price
of hard drive space at a low point. This is not a preferred method because of the dependence on
hardware and the capability to tamper with or accidentally remove data. This is not suitable for
long-term storage and is not recommended for backups.

There are other media types, including USB drives, which are generally not yet large enough to hold a
significant amount of backup data. Floppy diskettes are discounted as well because of their extremely
limited storage space.

In deciding the type of media to use for your backups, you need to consider what you are backing up,
the importance of the data (its value to you or to your business), the amount of data to back up, and the
time frame in which you will need the backup to run (to find out if you need faster hardware, and so
on), and how long you plan to save the data for restoration purposes. All of these issues play a role in
determining which backup hardware and media are best suited to your situation. If you need to save
your data for 30 years, for example, you will probably choose magnetic tape over online disk drive stor-
age because tape backup has proven it viability over long periods of proper storage.

Backup Types
You back up your data so that you can restore it if you ever need to. For this reason, you must determine
the best schema for backing up your data. Here are the three major types of backups:

❑ Full: Backs up all data within the scope of the backup definition. For instance, if you set your
backup command to back up the /etc and /home directories, a full backup would copy the
entire /etc and /home directories and files regardless if they changed since the last backup.

323

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 323

❑ Differential: Backs up all data that has changed since the last full backup. For instance, if you
did a full backup of the /etc and /home directories on Friday and then ran a differential
backup on those directories on Monday, only the files that had changed since Friday and would
be backed up on Monday. For a complete restoration, you would need the full backup and the
latest differential backup.

❑ Incremental: Backs up all data that has changed since the completion of any other type of
backup. If you did a differential backup of the /etc and /home directories on Friday and then
an incremental backup on Monday, all the files in those directories that had changed since
Friday would be backed up. For a restoration, you would need the last full and differential
backups, then all incremental backups for the time period you want restored.

There are pros and cons for each of these backups, as the following table shows.

Type Advantages Disadvantages

Full Faster data restoration than a Backups take significantly longer than
differential or incremental backup. the other types.

Requires the most media space.

Differential Faster data restoration than an Backup slower than an incremental.
incremental backup. Requires more media space than by
Backs up faster than a full type. an incremental type.
Requires less backup media space
than for a full backup.

Incremental Much faster backup than full Requires more time to restore than a
or differential. differential or full backup does.
Significantly smaller backup
media space required than for
full or differential type.

These types of backups will be discussed throughout the chapter, so you should be cognizant of the
advantages and disadvantages with each type of backup.

When to Run Backups
You will want to run your backups when there is the least amount of activity on the system, so you cap-
ture all changes. This usually means backups in the middle of the night, which can be easily scheduled
with crons (discussed in Chapter 11). Backups also typically take up a significant amount of resources on
the system, slowing the system down if there are other resource-intensive processes running. The first
time you run the backups, you should run them manually to ensure that they run properly and do not
cause system slowdowns for other processes.

Another thing to consider is the frequency with which you run your backups. You will want to back up
data when the loss of the data would be significant, such as potential financial impact or loss of produc-
tivity. If you cannot afford to incur the loss of even 1 day’s worth of data, you do not want to have a
backup schedule that backs up data every week. Generally, this is a full backup weekly at a minimum,

324

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 324

with differential or incremental backups throughout the week to capture any changes made through the
week. The frequency and type you use is dependant on your requirements for backup time frame and
restoration time.

Verify Backups
After you have made your backups, verify them by restoring the data you backed up. For maximum
assurance, you will want to restore the data and then work from it for a period of time to ensure that
you are not missing critical data. You do not want to find out your backups weren’t complete or were
corrupted after you need them. Verify your backups frequently by using multiple methods, from restor-
ing the entire backup to restoring individual files for error checking. As appropriate, you will want to
restore your data on a test system and have users determine whether there is any data missing. During
the restoration exercise, you will want to restore your system and then run off that system for a few days
to make sure you have everything you need backed up. It is far better to find out that you are missing
files or data in your backup design during a scheduled test, than to find out when you have a disaster
scenario. A test of your backup is recommended every month or quarter as needs dictate and depending
on the value of the data involved.

Storing Backups
Backup storage is a critical component that is often overlooked when planning a backup strategy.
Storing your backups on-site may seem like a good idea, because you will have instant access to them,
but what happens if you cannot access the building that houses your servers and backups for a long
period of time, or perhaps never? If you store your backups on-site, for example, and the building burns
down, you will have lost your backups as well as your system.

Losing access to your site means that you will need to restore your production systems to completely
new hardware, so you must have access to your backup media. This is why you should store at least
some of your backups off-site or at a minimum in a fireproof safe. If you do store backup media on-site,
make sure they are properly protected in accordance with the sensitivity of the data stored on the media
and not available to anyone who does not need access, because these could hold all your company’s
trade secrets.

If you do choose an off-site solution, you should ensure that the company storing your backup media is
available by phone 24 hours a day; determine whether the company’s response time is suitable for your
needs; check out the storage facility’s security; and take a look at any complaints that company has
received from customers. The company storing your backup media is, in essence, holding the trade secrets
of your company, so a thorough knowledge of the vendor’s practices and procedures for storing backup
media is essential. At frequent intervals, you should request a return of backup media to check the ven-
dor’s response times and capability to provide the media you request in a timely and proficient manner.

One common method for storing backup media is to hold the most recent week’s backup on-site in a
fireproof safe, so that any accidental deletions or other data loss can be restored very quickly. After that
week is up, the backup media is moved off-site for a designated period of time (from 1 year to forever)
to be available in case of emergency. You should store some of your backup media for an extended
period of time in case of archival needs, but you should contact your legal department for guidance if
you are doing this for a company because there are laws regulating how long data must be saved
depending on the industry you are in.

325

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 325

Backup Commands
By default, Unix includes many utilities for backing up data to many different types of media, enabling
you to use the tool that best fits your backup needs, and providing a great deal of flexibility especially in
scripting of the tools as discussed elsewhere in this book.

Most backup commands require that you run them as a privileged user such as root, because the backup
may need to access files readable by only special users based on restricted permissions, such as
/etc/shadow for instance. You will also want to make that sure no users are using the files or file sys-
tems while you are backing up, because you can run into problems such as corrupt backups that may
not be evident until you try to restore.

Using tar
The tar (tape archive) command enables you to create tape archives and, if needed, send them directly
to a tape device. This command is very useful even if you do not have a tape drive, because you can use
it to merge a large group of files into a single file called a tarfile. A directory that contains 100 files and 20
directories can be consolidated into a single tarfile, for example. This is not compression as WinZip, gzip,
or bzip does, but you can combine tar with the gzip or bzip2 command to create a compressed tarfile.
Before the tarfile is compressed it will consume the same disk space as the directories it includes. If you
use the tar command and do not have a tape drive to write the tarfile to, you can simply back it up to a
CD-ROM or other means at a later time.

The tar command has many functions, including:

❑ t— Shows the table of contents for the tarfile

❑ x— Extracts or restores the contents of the tarfile

❑ u— Updates the contents of a tarfile

There are some directories that you cannot tar, such as /proc, so using / as the directory name can result
in permission errors. There are also many directories you don’t want to tar, such as /tmp.

The syntax for creating a tarfile is:

tar -cvf tarfile_name_or_tape_device directory_name

The c argument means to begin writing at the beginning of the tarfile, the v represents verbose, which
provides a lot of output showing what the command is doing. The f option notifies the tar command that
the user will be providing a tarfile name instead of using the default identified in /etc/default/tar.

To create a tarfile with the contents of the entire /etc directory to a properly configured tape device
named /dev/rmt0, for example, you’d use the following command:

tar -cvf /dev/rmt0 /etc

This writes a copy of the contents of the /etc directory to the specified tape device.

326

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 326

If you did not have a tape device and wanted to save the tarfile to a directory called /backups/etc-
backup-122004.tar, you would run the following command:

tar -cvf /backups/etc-backup-122004.tar /etc

It is customary to add the .tar extension to tarfiles so they are easier to recognize. If you use compression
(as discussed later in this section), you can add .tar,.gz or .tgz to represent a compressed tarfile. This
command creates the specified file that will contain a copy of all the files and directories in /etc in a
single file (which will probably be quite large).

After creating a tarfile, you may want to view its contents. To do this, you can use the following command
for a tar:

tar -tvf tarfile_name_or_tape_device directory_name

So to view the contents of the /etc backup you just created on the tape device, you would run the
following:

tar -tvf /dev/rmt0

To view the contents of the /etc backup you created to /backups/etc-backup-122004.tar, you
would use:

tar -tvf /backups/etc-backup-122004.tar

If you want only a simple listing, you can omit the v option, reducing output; your command would be

tar -tf /dev/rmt0

or

tar -tf /backups/etc-backup-122004.tar

which would show output similar to the following:

#tar -tf /backups/etc-backup-122004.tar
etc/
etc/profile.d/
etc/profile.d/ssh-client.sh
etc/profile.d/alias.sh
etc/profile.d/xhost.csh
etc/profile.d/xhost.sh
(...The rest omitted for brevity)

To restore the contents of a tarfile, use the -xvf options to tar. Here’s the syntax for the extraction of a
tarfile:

tar -xvf tarfile_name_or_tape_device directory_name

327

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 327

To obtain a copy of /etc/passwd from the tarfile you sent to the tape device earlier, you would type the
following:

tar -xvf /dev/rmt0 etc/passwd

To extract the same file from the tarfile /backups/etc-backup-122004.tar that was created earlier,
you would use the command:

tar -xvf /backups/etc-backup-122004.tar etc/passwd

To extract the entire contents of /backups/etc-backup-122004.tar to your current directory, you
would use:

tar -xvf /backups/etc-backup-122004.tar

This command creates a directory called etc in your current directory and then extracts a copy of all the
files that were archived in /backups/etc-backup-122004.tar to that etc directory (it won’t go to
the / directory unless that is your current directory).

Be careful where you are extracting files, because they will be extracted to the directory in which you are
currently located. So if you extracted the /etc/passwd file from /backups/etc-backup-122004.tar
while you were located in the / directory, the systems current /etc/passwd file would be overwritten
(if you have the proper permissions) by the one you extracted from the tarfile. It is usually safe to extract
the files in a temporary directory to prevent any accidental overwriting of files.

The -u option enables you to update your tarfile with extra files that will be appended to the end of the
tarfile. If a file with the same name exists in the tarfile, it will be updated. This can be a slow process, so
remain patient. The syntax for update is:

tar -uf tarfile_name_or_tape_device directory_name

To update the /etc/passwd file in /backups/etc-backup-122004.tar tarfile with a new copy of
passwd, for example, you would run the following command:

tar -uf /backups/etc-backup-122004.tar /etc/passwd

This command does not work on tape archives because magnetic media is not necessarily designed to
write in intermittent parts of the tape. This command will not erase the previous version. It will, how-
ever, append a new copy at the end of the tarfile if it has changed since the previous time the file was
added to the tarfile.

GNU tar (available on some versions of Unix or for download) also has some scripts for simple backups
and restores of files.

There are versions of tar that enable you to make complete backups of files using built-in scripts as well
as many other functions not provided in other versions of tar. To review the comprehensive feature set
available on one of the more popular versions, GNU tar, check out the online manual for GNU at
http://gnu.org/software/tar/manual/html_node/tar_toc.html.

328

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 328

Compressing with gzip and bzip2
Compression of data is when you take a regular size of file and reduce the amount of disk space it con-
sumes. It requires a special application called a compression program. When storing backups on any
type of media, you generally want to conserve space to allow maximum utilization of the media. A com-
pressed file generally cannot be read by the standard applications that it normally operates with because
the file has been optimized for compression, which makes it unreadable. So if you compressed a text file,
you would not be able to read it in a text editor such as vi. The file is also usually significantly reduced
from its original size because of the compression, meaning it takes up less space than it did in its uncom-
pressed form, depending on the file type.

Unix has some free alternatives for compressing data in the forms of gzip and bzip2, as discussed in this
section.

gzip
GNU zip (gzip) is the most popular compression program available for Unix operating systems, and
rightfully so because of its portability among different system architectures and its full feature set.

The command syntax for a simple compression of a file using gzip is:

gzip filename

To make a standard text file called mytextfile take up less space by compressing it, you would run:

gzip mytextfile

If you used the ls command to show the directory contents after running the preceding command, the
output would include a new file called mytextfile.gz. The .gz extension is the standard extension
gzip adds to any file that has been compressed with this tool. When the command completes, it removes
the old uncompressed file and leaves only the compressed version in place. If you are compressing a
large file and are concerned with speed, you can add -1 to have gzip compress the file faster:

gzip -1 mytextfile

If you are more concerned with conserving space, you can use -9 for best compression:

gzip -9 mytextfile

You can use any number between 1 and 9 to indicate your preference for speed or for better compression.
The default compression state is 6, edging toward better compression at the cost of speed.

To view information on the gzipped file, you can use the -l option, which shows output similar to the
following:

#gzip -l mytextfile.gz
compressed uncompr. ratio uncompressed_name

614 1660 64.8% mytextfile

329

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 329

The output shows the compressed file size, the uncompressed file size, the ratio of compression applied
to the file, and the uncompressed filename of each file in the gzip archive.

To restore the file to its original uncompressed state, use either gunzip or gzip -d:

gunzip mytextfile.gz

or

gzip -d mytextfile.gz

This creates a new file called mytextfile that would be the uncompressed version of the regular file
you had just created. The gzip command prompts you to overwrite a file if the file you are decompress-
ing already exists. To override this behavior and have gzip decompression overwrite existing files, use
the -f option when decompressing with gzip -d or gunzip. When the command has completed, it
removes the compressed file and leaves only the uncompressed file in place. In Unix, compressed files
and uncompressed files are all referred to as regular files.

There are other options for more advanced compression described in the gzip man page.

The following exercise provides you with an opportunity to try out gzip for yourself.

Try It Out Use gzip
1. Create a file called test-file in your /tmp directory using:

cd /tmp
touch test-file

2. Using vi, enter some text into the file — about 10 lines of random sentences — and then save
the file.

3. Use the ls -l command to show the size of the file:

ls -l test-file

4. To show that you can view the file, because it is a regular text file, use the cat command:

cat test-file

You should see the 10 lines of random sentences you created previously.

5. Use the gzip command to compress the file you just created:

gzip test-file

6. You now have a file called test-file.gz in your /tmp directory. Use the -l command to show
statistics of the compressed file:

gzip -l test-file.gz

You can see how much compression gzip applied.

330

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 330

7. Use the ls -l command to show the compressed file’s size:

ls -l test-file.gz

The file should take up less space than the uncompressed version did, because gzip reduced
the file size. The file is now unreadable and would show a bunch of unusual characters if you
were to use the cat command to view it (do not try this as it can create problems in the terminal
window.)

8. Decompress your file using gzip or gunzip:

gzip -d test-file.gz

or

gunzip -d test-file.gz

9. The /tmp directory has a file called test-file in it (the test-file.gz file no longer shows).
Use the cat command to view the contents of the file:

cat test-file

10. You should see the same output you did when you used cat prior to compressing the file. Use
the ls -l command again, and you’ll see that the file is the same size as it was originally.

How It Works
The test-file text file was compressed successfully by the gzip command. Using gunzip or gzip,
you were able to successfully decompress the file so that it appeared as if it had never been modified or
compressed before.

Files that have been gzipped typically end in the .gz, .z, or .Z extension, so if you come across a file with
any of those extensions, it was most likely compressed using gzip.

bzip2
The bzip2 command offers the same type of functionality as gzip, with some improvements on the
compression capability. The bzip2 type of compressed file is not as widely used as the gzip, but you will
run across it, or you may find you prefer it. Typically, bzip2-compressed files end with a .bz, .bz2, .bzip2,
.tbz, or .tbz2 extension. If you encounter a file with one of these extensions, it most likely was com-
pressed using bzip2.

Here’s the syntax for a simple file compression using bzip2:

bzip2 filename

To make a standard text file called mytextfile take up less space by compressing it, you would run:

bzip2 mytextfile

The ls command would show a new file called mytextfile.bz2 in the directory.

331

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 331

As with the gzip command, you can use any number between 1 and 9 to indicate your preference for
speed or for better compression. If you are compressing a large file and are concerned with speed, you
can add -1 to bzip2:

bzip2 -1 mytextfile

If you are more concerned with conserving space, you can use -9 for best compression:

bzip2 -9 mytextfile

The default compression state for bzip2 is 9, for best results.

To restore a file to its original uncompressed state, you would use bunzip2 or bzip2 -d:

bunzip2 mytextfile.bz2

or

bzip2 -d mytextfile.bz2

This creates a new file called mytextfile that would be the uncompressed version of the regular file
you just created. One thing to remember with bzip2 is that by default it will not overwrite an existing
file. If you did want bzip2 to overwrite a file when decompressing, you need to use the -f option.

The bzip2 command has a related command called bzip2recover that will attempt to recover a damaged
bzip2 archive. See the bzip2 man page for more information on this and other functionality.

Using gzip or bzip2 and tar Together
The gzip or bzip2 and tar commands complement each other very well, and, in fact, these two com-
mands typically work together through command integration. To create a tarfile and compress it in the
same command, use the following to filter the tarfile through gzip:

tar -cvzf tarfile_name_or_tape_device directory_name_to_tar_and_compress

If you prefer to use bzip2, you can use the following:

tar -cvjf tarfile-name_or_tape_device directory-to-tar-and-compress

It is customary to add an extension of .tar.gz or .tgz to a gzipped and tarred file or to add a .bz or .tbz
extension to a bzipped file, so if you use the same file created for the tar example earlier, you would use
the following command to tar and gzip the file

tar -cvzf /backups/etc-backup-122004.tar.gz /etc

or

tar -cvf /backups/etc-backup-122004.tgz /etc

332

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 332

Use the following to create a tar and bzipped archive:

tar -cvjf /backups/etc-backup-122004.tar.bz /etc

You can uncompress and untar a file with the individual commands, using the decompress command
first. For example, to untar and uncompress the /backups/etc-backup-122004.tgz file, you first use

gunzip /backups/etc-backup-122004.tgz

which would result in a file called /backups/etc-backup-122004.tar. Then you would untar the file:

tar -xvf /backups/etc-backup-122004.tar

And you would have the untarred archive of the /etc directory created earlier. You can also do this with
one command:

tar -xvzf /backups/etc-backup-122004.tgz

The -xvzf option takes the two preceding steps and combines them into one command. The result would
put the previously tarred contents of the /etc directory in new subdirectory (called etc) of your current
directory. You can use the same steps for a bzipped file, using j instead of z.

cpio
The cpio (copy in/out) command is more difficult to use than the tar command but provides some
special functionality, such as the capability to save special files. The cpio command receives all of its file
inputs (what files to backup) from other commands, allowing for easy-to-create scripts for automation.
This command is not available on all versions of Unix and has a steeper learning curve than other meth-
ods, so make sure you sure to read the man pages before using it for backups. There are three primary
options for the cpio command, described in the following table.

Option Description

-i Extracts files from standard input.

-o Reads standard input for a list of file path names to back up (allowing for
redirection to standard out).

-p Reads file path names from standard input, saving a copy to a directory
named later.

Here’s an example of how to create a simple backup of the current directory:

find . -print | cpio -ov >cpio_archive

The same results could have been produced by using (as well as many, many other combinations):

ls * | cpio -ov >cpio_archive

If you have the ls command aliased to ls -l, this command will fail.

333

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 333

This gathers a list of all the files in the current directory (find .) and prints them. The results of the
find command are redirected by way of the pipe (|) to the cpio command. cpio then reads the output
of the find command (-o) and lists the filenames (-v). The output of cpio is then redirected (>) to file
called cpio_archive. cpio_archive could have been replaced with a device name such as /dev/rmt0
or /dev/fd0 for a magnetic tape drive or floppy drive, respectively. (These device names are examples;
your device names may differ.)

For instance if you had a directory called /tmp/cpio-directory that contained cpio1-test-file,
cpio2-test-file, and cpio3-test-file and you wanted to create a backup of the /tmp/cpio-
directory to a file called cpio-archive-file, you could run the following commands to cd into the
/tmp/cpio directory, create a cpio archive, and then run an ls command to see the contents of the
directory:

#cd /tmp/cpio-directory
#find . -print | cpio -ov >cpio-archive-file
cpio: .: truncating inode number
.
cpio: cpio1-test-file: truncating inode number
./cpio1-test-file
cpio: cpio2-test-file: truncating inode number
./cpio2-test-file
cpio: cpio3-test-file: truncating inode number
./cpio3-test-file
3 blocks
#ls
cpio1-test-file cpio2-test-file cpio3-test-file cpio-archive-file

This creates a new file called cpio-archive-file, as shown in the output of the ls command. You
could have replaced the filename cpio-archive-file with the name of a device, and the file would
have been written directly to the device.

To view the contents of a cpio archive, use the -itv option and redirect the archive into the cpio com-
mand. For instance:

#cpio -itv <cpio-archive-file
drwxr-xr-x 2 user user 0 Dec 20 22:44 .
-rw-r--r-- 1 user user 37 Dec 20 22:38 cpio1-test-file
-rw-r--r-- 1 user user 37 Dec 20 22:38 cpio2-test-file
-rw-r--r-- 1 user user 37 Dec 20 22:38 cpio3-test-file
3 blocks
#

This command displays the contents of the cpio-archive-file just created, as shown in the output
following the command. If the file was on a magnetic tape drive, you could have run

cpio -itv </dev/rmt0

and if you had saved the same cpio-archive-file to that tape drive, you would have seen the same
results.

334

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 334

To retrieve files from a cpio archive, run the following in another directory, /tmp/cpio-directory2 in
this example:

#cd /tmp/cpio-directory2
#cpio -i </tmp/cpio-directory/cpio-archive-file

3 blocks
#

If you did an ls at this point, you’d see that the directory contains the three files archived in cpio earlier
(cpio1-test-file, cpio2-test-file, and cpio3-test-file).

There are many more options and ways to use cpio for backing up files. Refer to the man pages for more
information on this very versatile and flexible command.

dump, backup, and restore
The dump command is a true backup tool in the sense that it is built for backing up entire file systems in
a methodical, consistent manner. The dump command has two components: the actual backup command
that performs a backup per the user’s specifications, and the restore command that recovers the
backed-up files. On some systems these commands are called ufsdump and ufsrestore, such as on
Sun’s Solaris, but the differences between the two are minor between the implementations. The benefits
of using dump over other command-line backup utilities is that dump can:

❑ Identify when a file was last backed up

❑ Mark a file as having had a backup

❑ Back up many file systems on a single tape device (or back up file systems across many tapes)

❑ Easily back up remote systems

In addition, dump’s restores are fairly intuitive and simple.

The first step to using dump is to understand its available command-line options, which are described in
the following table.

Option Description

-0 through -9 Dump levels. A level 0 dump indicates that everything will be copied to
the backup device. All other numbers indicate incremental backups, which
copy all files that are new or modified since the last lower level.

-a Disregards tape length calculations and writes until an end-of-tape message
is received (useful for appending data to a tape).

-A Creates a table of contents of the dump in a file named immediately after
the -A. This option is for later use with the restore command.

Table continued on following page

335

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 335

Option Description

-f output_name Writes the backup to the output_name file (including a tape device such
as /dev/rmt0, a plain file, or even a remote system, such as linux2:/
dev/rmt0). For instance, you could run the dump command with -f
/var/my_backup_050105 to write the backup to a file called
/var/my_backup_050105. To see the backups on your local screen, put a -
after the f option to indicate standard output (good for troubleshooting).

-F script_name Runs the script_name script after the backup has completed. This is useful
for database backups where the database should be brought back online.

-j option Uses compression level indicated immediately after the option (1–9). This
uses bzip2.

-L label_name Uses label_name to label the backup for reading by restore.

-q Quits immediately when operator intervention is required.

-w Shows a listing of all file systems that need to be dumped.

-W Shows a listing of all dumps for backed-up file systems (derived from the
file /etc/dumpdates).

-z options Similar to -j except that gzip is used for the compression.

The proper back up of data is crucial, so dump is very cautious when it runs into an error and typically
requires user intervention when a problem arises.

Backups typically must be run as root or another user with backup permissions.

When using dump for the first time, make sure you back up everything initially by running the dump
command with a 0 switch, such as:

/sbin/dump -0u -f /dev/st0 /home

This command backs up everything in the /home directory and sends the backup to the device
/dev/st0 (typically a tape drive in Linux). To back up the /home directory to a file called
/var/backup-122204, you could run:

/sbin/dump -0u -f /var/backup-122204 /home

After you begin the command, you’ll see output similar to that shown in Figure 18-1.

336

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 336

Figure 18-1

You can now run the dump -W command to see the status of file system backups, as shown in Figure 18-2.

Figure 18-2

337

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 337

If you prefer to see which file systems dump has determined need to be backed up (as shown in Figure
18-3), use dump -w (lowercase “w”).

Figure 18-3

Refer to the man pages for more information about scripting your backups to ensure that you get the
options you need to efficiently and accurately back up your file systems.

After backing up, you need to restore to validate your backup or to recover from an accidental deletion
or system failure. The command for restoring data from a dump is appropriately named restore. The fol-
lowing table shows some of the command-line options for the restore command.

Option Description

-f Indicates where to restore from (file or device).

-F script Runs the named script at the beginning of the backup.

-h Restores the actual directory, not the files referred to.

-i Starts a restoration in interactive mode.

-M Enables multivolume feature (when -M used for the dump). When used with
-f option, it will use filename001, filename002, filename003, and so on.

-N Only prints filenames; does not restore actual files.

338

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 338

Option Description

-r Restores an entire tape or file system (use this cautiously).

-v Shows verbose output.

-V Reads multivolume media other than tape (such as CD-ROMs).

-x Restores specifically named files or directories.

-X filelisting Extracts the files listed in filelisting from the restore.

-y Does not abort if there is an error; continues restoring.

The interactive mode of restore (initiated with the -i option) has its own prompt (usually RESTORE>).
While in the interactive mode, you can use the options described in the following table.

Option Description

add directory_ If used alone, it restores the current directory. If a directory or filename is
or_file added, it will be added to the restore.

cd directory Changes to the named directory.

delete Removes the current directory from the restore list if no arguments. If
directory_ directory or file is specified, removes the named files from the restore.
or_file

extract All files selected for extraction are extracted (restore is initiated).

help Shows all available commands.

ls directory Shows a listing of files in current directory if no files or directory named. If
one is listed, then that is shown. Files to be restored have a * beside them.

pwd Shows the current working directory.

quit Exits the restore interactive session immediately.

setmodes Sets the owner, modes, and times for files.

verbose Shows extended information.

To initiate a restore, use the following command (using the backup file you created using the dump
command):

restore -if /var/backup-122204

Figure 18-4 shows a sampling of some of the restore commands in interactive mode and the output
they generate.

339

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 339

Figure 18-4

To do a restore in interactive mode, you can use the cd command to move around directories, use the
add command to add directories or files, and then extract to actually restore the file.

The commands to restore are very straightforward and intuitive. Dump and restore can be used with
the mt command for tape manipulation as well. Check the man pages for the mt command for more
information on this specific sequence.

Other Backup Commands
In the tradition of multiple ways to do the same thing in Unix, there are other backup commands worth
researching if the previously described commands do not work in your situation. Some of these com-
mands are:

❑ pax (portable archive exchange) is very similar to tar and cpio but with some added functional-
ity. More information is available at http://directory.fsf.org/GNU/paxutils.html.

❑ rsync— For fast, remote file synchronization. More information is available at http://samba
.anu.edu.au/rsync/.

❑ rdist— For distributed copies of files and backup. More information is available at
http://www.magnicomp.com/rdist/.

340

Chapter 18

21_579940 ch18.qxd 3/21/05 6:15 PM Page 340

Backup Suites
For production or commercial environments, you may determine that you need some more functionality,
ease of use, and support for your overall backup solution. There are many great software applications
available for the Unix operating systems, including:

❑ ARCserver —www3.ca.com/Solutions/ProductFamily.asp?ID=115

❑ Arkia —www.arkeia.com

❑ IBM Tivoli Storage Manager —www-306.ibm.com/software/tivoli/products/storage-mgr

❑ LoneTar —www.lone-tar.com

❑ Veritas NetBackup —www.veritas.com/Products/www?c=product&refId=2

The following are some free backup suites that provide more ease-of-use than their command-line inter-
face counterparts:

❑ Amanda —www.amanda.org

❑ Bacula —www.bacula.org

❑ Kbackup —http://kbackup.sourceforge.net

Summary
In this chapter, you learned the basics of backing up your data, including building your strategy for
backups to the storage of your backup media. You also learned the major commands used for backing
up your data, as well as the different media types available for backup.

Using the backup and restore commands, you can run simple backups. The gzip and bzip2 com-
mands enable you to compress your files to safe space on backup media as well. You also learned how
to use the cpio and tar commands to create simple, portable files out of a larger group of files. Now
that you have the tools to perform backups of your Unix system, you should start using these skills by
backing up your system.

Exercise
Demonstrate how you would use the tar and then gzip commands to compress all your configuration
files in /etc (the entire directory) and name the file /tmp/etc_backup.

341

Backup Tools

21_579940 ch18.qxd 3/21/05 6:15 PM Page 341

21_579940 ch18.qxd 3/21/05 6:15 PM Page 342

19
Installing Software
from Source Code

Although Unix systems come with a variety of software preinstalled or available through their
packaging systems, one of the many benefits of Unix is that you can build and install other soft-
ware from the original source code. In fact, most software for Unix systems is provided only in
original source code form, so you definitely want to know what to do with it.

This chapter explores finding and retrieving software, using common build tools, building and
installing software, and troubleshooting. It examines make, the GNU build system, GCC, and the
basics of package management. To augment your grasp of these topics, you’ll install several pro-
grams from source code.

To build software from source, Mac OS X users must have the Xcode Tools installed on their sys-
tem. If the computer had Mac OS X 10.3 Panther installed at the factory, it will have an installer
located at /Applications/Installers/Developer Tools/. If the installer is not present
on your system, you can download the software from Apple. Information on the software, includ-
ing downloading instructions, is available at http://developer.apple.com/tools
/download/. To download Xcode Tools from Apple, you will need to register for a free account
at Apple Developer Connection. Xcode Tools includes make, GCC, and other tools and utilities
outlined in this chapter. The current version of Xcode Tools is 1.5.

Understanding Source Code
Source code is the original data used to create software. It can be written in a programming language
such as C or C++, which needs to be compiled before use, or in a language such as Perl or Python
script, which is then ready to run as is. In most cases, the source code provides build instructions
and/or build tools to help generate and install the final product: ready-to-use software for your sys-
tem. Software that has been compiled and is in machine-executable format is not source code.

Because there are so many different Unix platforms available, and it takes a lot of time to provide
ready-to-use binaries (executables) for each one, Unix developers commonly provide their soft-
ware only in original source code downloads. Their software generally is portable enough for you

22_579940 ch19.qxd 3/21/05 6:14 PM Page 343

to be able to build it on your choice of Unix systems. By acquiring the original source code, you can
build the program for your personal system and, depending on your capability, customize it for your
specific needs.

When you download source code, check for notes or README files that refer to your particular Unix
version. You may need to download additional packages or documentation to get the program running
properly on your machine.

The downloads usually provide the original code in C, C++, Perl, Python, or other programming lan-
guages along with documentation, instructions on how to build, scripts and utilities to help build and
install the software, data files, example configurations, and various other files. Sometimes the down-
loads are simply ready-to-install (and maybe ready-to-run) scripts without any instructions.

Developers often provide security fixes or other needed improvements as source code patches before Unix
distributors or vendors provide updated precompiled releases. Imagine an emergency virus situation
where the only available software patch is provided solely as source code, rather than as a precompiled
binary specifically intended for your Unix variant. To install this patch, you need to know how to work
with code. Even if you work with precompiled software packages 99 percent of the time, it’s a good idea to
know how to build from source code so that you can keep your system up-to-date in times of crisis.

Of course, software provided directly from a developer (or software vendor) is often more current than
the versions provided with your operating system or your distribution. Installing from source code is a
good way to try newest features of the latest software, which may also include the least amount of test-
ing and the newest bugs — downloaders beware!

Open Source Licensing
Software available in the original source code form is often called open source, but that’s not the complete
definition. Open source software is software that carries particular license terms. It’s generally free to
review, free to share, free to use, and (most importantly) free to modify. (Free is used here in the sense
usually expressed as “free speech, not free beer.”) You may choose to pay for some open source software
or extra add-ons such as CDs or service.

Open source software licenses claim copyright on the source code and specify freedoms and limitations
on the use and distribution of the code and its derivatives. Software authors often create their own
license terms but they must honor any existing licenses if they reuse other developers’ code.

Understanding the basics of open source licensing — especially in a commercial situation — is necessary
so you can determine whether you can use and distribute the software. If you plan to work on an exist-
ing open source software project, or want to create your own software to be released under a typical
open source license, you must be familiar with the terms of the licenses that apply to the code you’re
using. Let’s take a look at two major kinds of open source licensing: BSD and GPL.

BSD Licenses
BSD-style licensed source code can be freely modified, and the modifications do not have to be redis-
tributed. Some BSD-licensed code requires that advertising materials contain a notice that BSD code is

344

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 344

used in the advertised program. BSD-licensed code is often used in proprietary or commercial software,
such as in Microsoft Windows and Apple Mac OS X.

An example of a simple BSD license is found in Wietse Venema’s popular TCP Wrappers code:

Copyright 1995 by Wietse Venema. All rights reserved. Some individual files may be
covered by other copyrights.

This material was originally written and compiled by Wietse Venema at Eindhoven
University of Technology, The Netherlands, in 1990, 1991, 1992, 1993, 1994 and 1995.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that this entire copyright notice is duplicated in all such
copies.

This software is provided “as is” and without any expressed or implied warranties,
including, without limitation, the implied warranties of merchantibility and
fitness for any particular purpose.

X11 and MIT licenses, which are used for a lot of open source X Window System software, are similar to
BSD licenses, as is the original license used by the popular Apache Web server.

GNU Public License
The GNU General Public License (GPL) is also common. It’s known as a copyleft license because it
requires that any modified version of the distributed software be released under the same terms. The
GNU Project and the Free Software Foundation, the proponents of the GPL, do not use the term open
source for software released under the GPL, preferring to use the term free software.

If you work with code that carries a GPL, be aware that your own work on that code is likely controlled
by GPL terms. That is, the GPL determines what can be done with derivatives of GPL-licensed code, and
that almost always means that your work must be available under identical GPL terms. For those who
believe that the best software is openly available for use and for development, the GPL is an excellent
license. If you have any compunction about releasing your code for other developers to hack, the best
choice is to start from scratch or, at the very least, avoid using any code that originates or derives from
code with a GNU Public License.

More than 30 open-source licenses are commonly used. For more information
and examples of a variety of licenses visit the Open Source Initiative Web site
at www.opensource.org and the Free Software Foundation’s comments at
www.gnu.org/licenses/license-list.html.

If you use a portion of some code, be sure to clearly document that use and include
a copy of the license with the new resulting code. In some cases, the use of some
licensed code may affect your other code by insisting that its license takes prece-
dence over all your code. (Yes, this does mean that, in some cases, the listed licenses
can be longer than the actual code!)

345

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 345

Finding and Downloading Unix Software
There are several ways to find new software for your Unix machine. The easiest is to use the built-in fea-
tures of your particular Unix variant. For example, many Linux variants offer tools that automatically
search for updated versions or patches for software you already have installed. (The most frustrating
way is to search the Web with your favorite search engine. While this may result in some jewels, even
the best search engines usually come up with a lot of dead ends, such as insecure or outdated versions.)

Your best bets for fresh and exciting Unix software are Web software archives. These sites range from
general archives that include Windows and Mac programs to archives so specific that they contain only
programs released under particular software licenses. Here are some of the most popular and reliable
archives containing a decent number of Unix programs:

❑ Freshmeat (www.freshmeat.net) — Cutting-edge releases

❑ Linuxberg (www.linuxberg.com) — Part of the Tucows archive

❑ Tucows (www.tucows.com) — A variety of Unix flavors, plus source code

❑ iBiblio (www.ibiblio.org) — A digital archive of all topics, including software

❑ Free Software Foundation (www.fsf.org) — Software licensed under the GPL

❑ Linux Software Map (www.boutell.com/lsm) — Software ported to Linux

Choosing Your Software
Developers frequently provide multiple downloads for the same program: the current official release, an
older release stable on odd platforms, and several development versions used primarily for testing. How
do you decide which one is for you?

Testing releases are often called alpha, beta, release candidates, or daily snapshots, and they are to be
used with caution. By definition, testing software is potentially unstable.

Normally, you should download the official release, which is often labeled “LATEST.” After you have
installed the release and gotten it to work properly, you might find that there are good reasons — such as
multiple bug patches or new features — to download a development version. It is important to realize
that development releases often require development versions of prerequisite software. Other software
that depends on the software being installed may be incompatible with the new testing code. Installing
new software is often the first step in a domino effect that requires upgrades across the board.

In several cases, security patches or important bug fixes are available for open source projects, although
the actual vendor or official developer of the project doesn’t provide a fix (a patch) or an updated release.
In fact, often the official Web site may not even mention that a security issue exists. It’s a good rule of
thumb to do a quick search for security issues for any software you install. A technology news site, such
as Slashdot (www.slashdot.org), can point you in the right direction.

Downloading Files
After you’ve chosen the packages you want to work with, it’s time to download the source code files.
Downloads are usually compressed with the tar, gzip, or bzip command. The resulting file is called a

346

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 346

tarball and typically has a.tgz, .tar.gz, or .tar.bz2 filename extension. Some source code downloads
are only available as shell archives, old-style compressed tar files (.Z extension), or ZIP files. Your Unix
machine should be able to expand tarballs packed in any of these formats, so it doesn’t matter which
you choose.

Check File Size
The software archive often notes the size of the downloaded file. You can also see the file size once you
start to download it, and you can abort the process if the file is too large for your disk. Remember, though,
that this is a compressed file which may contain a large number of folders and individual files. Check the
README file, the program’s own Web site, or other documentation to see the actual size of the expanded
and installed software. Installing a program for which you don’t have enough disk space could lead to a
nasty crash. You also need enough memory to handle all the expansion and installation processes.

Unfortunately, it’s nearly impossible to give a blanket value for ample disk space. What you need to
download and install a small command-line tool is very different from what you need to install a com-
pletely new shell or a powerful program such as Apache. In addition, the features you choose to enable
will affect the disk space needed. For example, extracting the Apache 2 source (a 6 MB download) takes
more than 22 MB, building it requires nearly 60 MB, and the installation needs an additional 20 MB of
disk space. It all boils down to “it depends” and “do some research.” Luckily, disk space is cheap these
days. When in doubt, upgrade!

Download Tips
Download the file using your Web browser or an FTP client such as nsftp or wget. Be sure that your
download client is set to download in binary mode, so that the tarball is executable when the download
is finished. If you download in ASCII mode, the file downloads as text and is unusable. (Most browsers
and FTP clients detect the file type automatically and set the mode accordingly.) Make note of where the
downloaded file is being saved so that you don’t have to search for it later.

Common locations for downloaded source tarballs include /usr/src for system source code,
/usr/local/src for third-party software, and ~/src for software that is only going to be used by
you. Other options include ${HOME}/src or ${HOME}/downloads. Wherever you choose to store tar-
balls, try to use one consistent location so that you can control these files and delete them after you’ve
installed the package.

Try It Out Download Source Code Packages
Here’s a file download in action. In this example, the curl program is used to retrieve a particular tarball
from the MaraDNS project (www.maradns.org). This could have been made even easier by clicking the
Download link on the project’s Web page and selecting the Current Stable Release option, but using an
FTP program better illustrates the process.

At the command prompt, invoke the curl program and specify both the target site where the package is
to be stored and which package is desired:

curl -o maradns-1.0.23.tar.bz2 -v http://www.maradns.org/download/maradns-
1.0.23.tar.bz2
* About to connect() to www.maradns.org:80
* Connected to www.maradns.org (66.33.48.187) port 80
> GET /download/maradns-1.0.23.tar.bz2 HTTP/1.1

347

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 347

User-Agent: curl/7.10/4 (i386--netbsdelf) libcurl/7.10.4 OpenSSL/0.9.6g ipv6
zlib/1.1.4
Host: www.maradns.org
Pragma: no-cache
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

% Total % Received % Xferd Average Speed Time Curr.
Dload Upload Total Current Left Speed

100 423k 100 423k 0 0 70000 0 0:00:06 0:00:06 0:00:00 76326
* Connection #0 left intact
* Closing connection #0

How It Works
The -o (or --output) option chooses the filename under which curl will save the download, and the -v
(or --verbose) option displays some debugging information. You can also use the -O (or --remote-
name) option to save a few keystrokes. The file will be saved with the same filename it had on the origi-
nating site.

curl -O -v http://www.maradns.org/download/maradns-1.0.23.tar.bz2

The following is the same download but using wget instead:

wget http://www.maradns.org/download/maradns-1.0.23.tar.bz2
--16:07:10-- http://www.maradns.org/download/maradns-1.0.23.tar.bz2

=> `maradns-1.0.23.tar.bz2.1’
Resolving www.maradns.org... done.
Connecting to www.maradns.org[66.33.48.187]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 433,164 [application/x-bzip2]

100%[==================================>] 433,164 77.43K/s ETA 00:00

16:07:15 (77.43 KB/s) - `maradns-1.0.23.tar.bz2.1’ saved [433164/433164]

Interestingly, wget can resume aborted downloads for both FTP and HTTP. It has quite a few interest-
ing and useful features that you can check out at www.gnu.org/software/wget/.

Verify the Source Code
Code verification is an optional step in the download and installation process. Often, developers provide
signatures, message digests, or checksums that can be used to verify the integrity of the software you
downloaded. This process checks that the software downloaded correctly and also confirms that it is, in
fact, the software you meant to download. Generally tools for downloading do an accurate job of down-
loading the file exactly as provided from the server and preventing any form of corruption. The main
reason to verify a software package is that you are concerned that you might be downloading a mali-
ciously altered package containing a Trojan horse or some other type of virus.

Does this happen? Yes. Some problem packages have been identified by using automated verification
systems, such as that included with the Gentoo Linux variant. These examples include previously
recorded checksums (using MD5) that are later used for checking the downloads in their build-from-
source system. In October 2002, one of the download servers for Sendmail was serving a Trojan horse.

348

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 348

In November 2002, copies of tcpdump and libpcap that included Trojan horses were served from a pop-
ular download mirror. During the past decade, other compromised programs have been distributed by
unknowing software archives.

NetBSD, OpenBSD, and FreeBSD also provide automated build-from-source systems that check the
integrity of the downloaded source code against previously generated digests. They are briefly discussed
later in this chapter.

Luckily, you can use verification tools to see whether you’ve got compromised software before you install
it and endanger your system. The simplest test is with a checksum, a numerical tag that indicates how
many bits should be in the downloaded package. Of course, the original, good checksum must be made
against the real, original version of the download, and the checksum should be provided from an indepen-
dent source. For example, if the checksum is hosted by the same server as the compromised download,
then it also could have been compromised. An example of an independent source is an e-mail announce-
ment that lists the MD5 digests for the downloads or using a different server than the downloads’ server.

Getting an MD5 digest is as simple as running digest, openssl, md5, or the md5sum tool (depending on
your Unix system) on the file. Here’s an example that shows how to get a checksum under NetBSD:

$ md5 httpd-2.0.50.tar.gz
MD5 (httpd-2.0.50.tar.gz) = 8b251767212aebf41a13128bb70c0b41

This could be compared to the MD5 digest provided on the www.apache.org Web site.

For many years, MD5 was said to provide a unique digest for every unique file. But in 2004, a collision
was found where two different files of the same size had the same MD5 digest. In response, many pro-
jects have started to use SHA1 digests as an alternative. You can use digest, openssl, sha1, or the
sha1sum tool to output a SHA1 digest:

$ openssl sha1 Mail-SpamAssassin-2.64.tar.bz2
SHA1(Mail-SpamAssassin-2.64.tar.bz2)= ea4925c6967249a581c4966d1cefd1a3162eb639

This can be compared to the SHA1 digest provided on the SpamAssassin.org Web site.

For improved verification of the integrity of the downloaded source, many developers use digital signa-
tures, providing a signed verification of the download. This signed verification will not match up if the
download is later modified. This digital signature is created with a secret key owned by the developer.
The public keys are usually available on the public key servers and are sometimes provided within the
source tarball. Commonly, the signed verification is done using PGP or Gnu Privacy Guard (GPG).

Try It Out Obtain a Digital Signature
You can use a digital signature to verify the MaraDNS package downloaded in the previous “Try It Out”
example. This example will work only if the GPG software is already installed and set up. The MaraDNS
download site also has a download for a GPG signature. The MaraDNS download included the public
key (for this example it’s at maradns-1.0.23/maradns.pgp.key).

1. First you need to extract the PGP key from the previously downloaded tar file:

bzcat maradns-1.0.23.tar.bz2 | tar xf – maradns-1.0.23/maradns.pgp.key

349

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 349

2. And retrieve the GPG signature for the bzip2 version of the downloaded source tar file:

wget http://www.maradns.org/download/maradns-1.0.23.tar.bz2.asc

3. To add that key to your own digital key ring, use the command:

gpg --import maradns-1.0.23/maradns.pgp.key

Alternatively, you could use:

gpg --recv-keys 1E61FCA6

where 1E61FCA6 is the key ID as identified with gpg.

4. Verify the downloaded file:

gpg --verify maradns-1.0.23.tar.bz2.asc maradns-1.0.23.tar.bz2

The .asc file is the digital signature downloaded from the MaraDNS download page.

How It Works
The gpg tool checks your downloaded file against the public encryption key included in the original
software package tarball download. If they are identical, the software is verified and is unlikely to be
corrupted. If they’re different, you could have a corrupted file, or worse, malicious code. Better to be safe
than sorry, so do not open and install the software instead, contact the project developer immediately.

For detailed information, consult your GnuPG or PGP documentation.

Building and Installing
The normal steps for building and installing software are:

1. Extract the source code files to your build directory.

2. Go into the source code directory.

3. Configure the build for your system.

4. Run make to build the software.

5. Install software (as root if needed).

Assuming you have downloaded your software, you are ready for step 1, extracting the source code to
your build directory.

Retrieving software downloads and building software from source should be done as a normal, nonroot
user. Installing the software can be done as root, if needed. Of course, if you trust the software enough to
install as root and later run it (or let other users run it), then you can probably trust the building steps

350

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 350

too. Nevertheless, it is good advice to make a habit of using elevated privileges only for those tasks that
truly need them. Also, if you are concerned about the build or later use of the software, you may want to
consider creating and using a dedicated user for these steps.

Some common places to do builds are /usr/src for system software, /usr/local/src for extra soft-
ware (sometimes referred to as third-party software or add-on software), or ${HOME}/src for software
installed for your own account. It’s common to keep all source code under ~/src and to extract the tar-
balls and do all the builds there. Keeping code in a central location makes for easier cleanup, and keep-
ing files in your home directory is a nice reminder to do the extractions and builds as a normal,
nonprivileged user.

If you have several administrators building and installing software, you may want to use a central place
so they all can help, or use separate places so you don’t conflict with each other’s work. Some use dedi-
cated user accounts for building software, which could help with organization, maintenance, and testing.

Extracting the Files
You can’t use the tarball directly to install the software. First, you have to expand the compressed file to
see the actual files it contains. The most common way to extract the source tar file is with this command:

tar xvzf source-download.tar.gz

The tar command works in a slightly different manner from other Unix commands. Specifically, tar’s
options do not use the hyphen. In this example, there are four options:

❑ x— Identifies a compressed file that needs to be extracted

❑ v— Invokes verbose mode, listing each file as it is expanded

❑ z— Decompresses the file in gzip format

❑ f— Defines the compressed file as source-download.tar.gz

If your Unix variant does not honor the z option, use this command to unzip files compressed with gzip:

gunzip -c source-download.tar.gz | tar xvf -

Some versions of tar support a j or J or y option that means to use bzip2 compression. In addition,
some versions of tar are smart enough to handle bzip2 files when using the tar z option. (Have a look
at your tar manual page for specific details.)

In most cases, the source tarball will be extracted in a subdirectory that uses the same name and version
of the software as the directory name. For example, the Mail-SpamAssassin-2.64.tar.bz2 tar file
has all files within a Mail-SpamAssassin-2.64 directory. Some ZIP or tar files will have all of the
source at the top level of the file archive and may extract files to your current working directory (possi-
bly overwriting files with same name). If you’re concerned, you may want to view the filename list
before extracting, or move the tarball into its own subdirectory before extracting it. You can view the
files before extracting by using the tar t (table of contents) function.

351

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 351

Beginning the Build
After extracting the source code, go into the newly created directory (step 2). List its contents with the ls
command. There are usually README and INSTALL files included. (Sometimes the names are slightly dif-
ferent, or they are located in a subdirectory, possibly called docs or help). Have a look at these files to
find out about any prerequisite programs or libraries you may need, and also to get instructions on how
to prepare your build, build the software, and install the results. These files can also be useful for doing
simple configurations and getting started with the software.

Often the INSTALL file is based on a premade template and is not specific for the particular software
you want to install. If that’s the case, you can use a standard build process like the one described in this
chapter. If the INSTALL file describes a different process, use it because a standard process may not
install such a program correctly.

It’s also a good idea to consult the Web site for the software. Unusual compilation or installation
instructions can be found there, as well as answers to frequently asked questions about build problems.

Your goal is to configure the build process so that it properly detects your build environment and prop-
erly installs for your operating system. Sometimes, you may need to manually modify a makefile to
define how you want the build and install done. The makefile is the file that dictates how the build is
accomplished. Confusingly or not, a makefile is usually named Makefile with a capital M. You’ll learn
more about makefiles later in this chapter. Luckily, most modern software uses a script to help with this,
rather than forcing you to configure the makefile by hand.

Using the Configure Script
To get the makefile in order, look for an executable called configure in the top-level directory of your
expanded tarball. Run the configure script (step 3 in the build-and-install list) with this command:

./configure --help

Use the dot and slash at the beginning to identify the actual location of this script, because most likely
your current working directory is not part of your PATH environment variable’s value. (See Chapter 5 for
more information about the PATH variable.) The --help option is self-explanatory. The output should
list a variety of switches you can use when running ./configure that will define how you want the
code to be built and installed. For example, this is the output for a beta release of Blackbox window
manager code:

$./configure --help
‘configure’ configures blackbox 0.70.0beta2 to adapt to many kinds of systems.

Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:
-h, --help display this help and exit

--help=short display options specific to this package
--help=recursive display the short help of all the included packages

352

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 352

-V, --version display version information and exit
-q, --quiet, --silent do not print `checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for `--cache-file=config.cache’
-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:
--prefix=PREFIX install architecture-independent files in PREFIX

[/usr/local]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]
By default, `make install’ will install all the files in
‘/usr/local/bin’, ‘/usr/local/lib’ etc. You can specify
an installation prefix other than `/usr/local’ using ‘--prefix’,
for instance ‘--prefix=$HOME’.
...

The configure output also often lists other settings for selecting where specific files types will be installed,
environment variables that can be defined, and different features that can be enabled or disabled.

If you prefer to use default values rather than figure out the appropriate options, just run ./configure
by itself. A configure script may help with many of the small details involved in building software,
including:

❑ Finding an install tool

❑ Detecting AWK implementation

❑ Seeing how the make command works (the command used to perform the actual build)

❑ Checking for type of C compiler and C++ compiler

❑ Learning how to run the C preprocessor (cpp)

❑ Autodetecting your architecture and operating system

❑ Checking for various standard include files (headers)

❑ Determining whether to build shared or static libraries

The configure script may give you help with many more steps in detecting the building environment.
See the “Tools to Help Create Makefiles” section in this chapter for more details.

A common option to set is --prefix, which defines where software should be installed. An install nor-
mally defaults to the /usr/local directory, and the software is configured during its build to reference
files within that directory hierarchy. The files are installed in appropriate subdirectories, such as
/usr/local/bin/ for executables, /usr/local/man/ for man pages, /usr/local/share/ for text
and data files, and /usr/local/lib/ for installed libraries. Installing to /usr/local keeps the new
program from overwriting your native system’s files.

353

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 353

FreeBSD uses /usr/local in its packaging system for installing third-party software, so under
FreeBSD you may want to use a different --prefix. See Chapter 4 for more information about file
system layout.

Here’s how you can use the --prefix option to install to your own home directory:

./configure --prefix=${HOME}

The build process could then make bin, sbin, lib, man and/or other subdirectories under your own
home directory.

Many administrators install software to a directory named after the software, using an option such as --
prefix=”/user/local/apache” or --prefix=”/opt/gnome-2.6.2”. In the first example, several
subdirectories would be created: /usr/local/apache/bin/, /usr/local/apache/conf,
/usr/local/apache/modules, and so on. The second example would install all the files under a
/opt/gnome-2.6.2 hierarchy. Some benefits of installing software to its own dedicated directory hier-
archy are your capability to clean up easily, the ability to quickly see what’s installed, and the option to
install the same software multiple times (for simpler upgrades) by using different installation prefixes
for each, such as using a version number.

Remember that if you install the executables to some arbitrary directory, they may not be available to
run using your executable search path (discussed in Chapter 5). As a workaround, add the newly
installed /bin directory to your PATH or use the full path to the command when running it. Ideas on
how and where to install software are provided later in this chapter.

The normal successful completion of a configure script shows output that it created at least one
Makefile. It may have other output, too, such as displaying how it was configured for your build.

It may take 20 seconds to several minutes to run a configure script.

Using make
After the configure script finishes successfully, you should have a new file called Makefile. Building
and installing software is usually done with a command called make. (The next section in this chapter
covers make in more detail.) In simple terms, make is used to create programs (as well as documentation,
Web pages, and almost anything else) by making sure each component is up-to-date. It is useful for
developers so they don’t have to rebuild all the code when they only change one small file. (Other uses
of make are covered later in this chapter.)

The two common make implementations are GNU make (also known as gmake), which is found on most
Linux systems, and pmake. Several derivatives of pmake are maintained by the BSD operating system
projects and are sometimes called bmake. Each of these make commands uses a standard syntax, but they
also have various incompatibilities. In most cases, the make command provided with your system
should work fine.

To continue with your build and installation, simply type make (step 4) at the command prompt. A variety
of output will scroll by on the screen; most of it is make running the GCC compiler on each of the files.

The speed of your system and amount of code to compile can result in the build steps taking a few sec-
onds to several hours. Some big projects such as GNU Libc, Koffice, and X.org may take more than a

354

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 354

day to build on older computers. OpenOffice.org can take a week to build. Your best bet is to build a pro-
ject on a Celeron 1000, AMD Mhz machine

When the make step completes successfully, it usually just exits without any obvious message. If there
is a problem, make generally exits with the message Error 1. (Details about make and makefiles are
discussed later in the chapter.)

Many software builds (such as GNU tar, PCRE, OpenLDAP, Ruby, and many more) also include a way
to test the build before installing it, often by running the commands make test or make check. This
can be useful in verifying that the software works correctly before actually installing and using it.

You might be able to run the new programs directly from the build directory to test before installing.
In many cases, you can’t do this because the programs have references to libraries, configurations, or
other data that are not installed yet, and often the make step doesn’t complete the build.

The normal final step (step 5) is to issue the command make install. This completes the build (if
needed), creates installation directories, and copies over executables, configuration files, libraries, docu-
mentation, various data, and so on. Depending on where you chose to install the software, you may need
to do this step with superuser privileges, such as:

su root -c “make install”

This command combines two elements. First, the su root component enables you to assume superuser
powers, taking the option -c that informs the shell to run the command included at the command line.
The second component is the command to be run as the superuser, make install. With this method,
you have to provide the superuser password, but you don’t have to log in and out in a separate action.

You may want to consider keeping a log of what you installed, sorted by software name, version, date,
and purpose. You also may want to make a list of files installed.

Some installations will back up older, previously installed versions of the same filenames, but don’t
depend on that feature. Also, sometimes you have to run multiple installation targets to install extra
components. See the installation directions to make sure. (The Lynx example installation later in this
chapter shows an extra installation for documentation.)

When you are all done with the installation, you may want to remove your build directories to save disk
space. Sometimes keeping them temporarily is useful for troubleshooting problems, but there’s no rea-
son to store tarballs for the long-term. You can always download them again.

Try It Out Build a Program from Source Code
Now that you’ve seen the basic structure of a source code installation, it’s time to give it a try. Follow these
steps to install OpenSSL from the original source code on a Debian Linux system to your home directory.

OpenSSL provides tools and libraries for SSL and cryptographic support.

1. Under your home directory, create a directory (src in this example) in which you will build the
software and then move into that directory:

$ mkdir ~/src
$ cd ~/src

355

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 355

2. Fetch the source code. Google and FreshMeat Web sites both lead to the www.openssl.org Web
page. Use your Web browser to download the 2.7 MB openssl-0.9.7e.tar.gz version, unless
a more recent version is available.

3. Extract the source code and go into the new directory:

$ tar xzf openssl-0.9.7e.tar.gz
$ cd openssl-0.9.7e

The tar v (verbose) option is not needed; in this example it would list more than 1900 filenames
as it extracts. The newly created directory is named openssl-0.9.7e and is 17 MB in size.

4. Use the ls command to find any files containing installation directions. (There are several
README* and INSTALL* files.)

5. Use the less or more commands to read the files you found. The main README file says to read
the INSTALL file to install openssl under a Unix derivative. The INSTALL file gives a quick
guide for installation and also further details for the configuration. Available in the same direc-
tory is a FAQ (Frequently Asked Questions) that has ideas for troubleshooting various build
problems.

You might have noticed that there are config and Configure commands in the new directory, but no
configure script (which is all lowercase). OpenSSL’s build at this time doesn’t use the standard
autoconf configure system, but the method shown here behaves in a similar fashion.

6. Following the INSTALL directions, run the config script with the --prefix switch:

$./config --prefix=${HOME}/openssl shared

The build will be configured so the installation goes into an openssl subdirectory under your
own home directory. The shared argument tells this specific script to build and install shared
libraries. This config script detects your operating system, your hardware platform, and your
environment’s build tools; defines how the openssl libraries will be built; and makes sure
that this local build is ready to go. The output may scroll by faster than you can read, but some
status information is displayed when this step completes.

7. Start the build:

$ make

Using the Makefiles’ instructions, make jumps into various subdirectories and runs the com-
piler on various C files in order. On this particular AMD-K6 system with 256 MB of memory
using gcc 2.95.4, this step took about 6 minutes.

8. To check the build before installing, run make with the test target:

$ make test

This tests the SSL and TLS authentication, certification routines, hashing (like MD5 and SHA1)
algorithms, private/public key generation, encryption and decryption ciphers, and more. (This
may take a couple minutes to complete.)

356

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 356

9. Install the software. Remember that you chose to install it into your own home directory (as
specified with the --prefix=${HOME}/openssl option during the config step), so you can
continue with installation using your normal user account.

$ make install

How It Works
The installation step will create the necessary subdirectories and install more than 340 files totaling 7.6
MB. (This takes more than 2 minutes to complete.) Have a look at the new install:

$ ls -l ~/openssl
total 16
drwxr-sr-x 2 reed reed 4096 Sep 7 11:00 bin
drwxr-sr-x 3 reed reed 4096 Sep 7 11:00 include
drwxr-sr-x 3 reed reed 4096 Sep 7 11:00 lib
drwxr-sr-x 7 reed reed 4096 Sep 7 11:00 ssl
$ ls -l ~/openssl/bin
total 1264
-rwxr-xr-x 1 reed reed 3656 Sep 7 11:00 c_rehash
-rwxr-xr-x 1 reed reed 1283686 Sep 7 11:00 openssl

In this example, you built software without having the basic configure script available. Even though
the regular configure options weren’t available, OpenSSL provided an alternative configuration
method that helped the software install properly.

Try It Out Build Code That Requires a Prerequisite
In this example, you’ll install Lynx, a popular Web browser and FTP client for text consoles. It uses the
autoconf configuration system. Be sure to notice how this is configured to use OpenSSL, which you
installed in the preceding example, for HTTPS support.

1. Move into your source building directory (/src, for this example):

$ cd ~/src

2. Find the source code for Lynx. The official Web site is lynx.browser.org. This example uses
the latest development version downloaded with wget:

$ wget http://lynx.isc.org/current/lynx2.8.5rel.1.tar.bz2

3. Extract the source and go into the newly created directory:

$ tar xvjf lynx2.8.5rel.1.tar.bz2
$ cd lynx2-8-5

Notice the tar j option for using bzip2 compression.

4. Look for any README or INSTALL files. In this case, Lynx provides a file called INSTALLATION
that has the instructions. This version of Lynx has many build options.

357

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 357

5. Run ./configure --help switch to see a list of the build options.

6. You must perform a special step to configure the Lynx build to install into your home directory
and to use the previously installed SSL libraries:

$ LDFLAGS=-Wl,-R${HOME}/openssl/lib
$./configure --prefix=${HOME} --with-ssl=${HOME}/openssl -- \
libdir=${HOME}/share/lynx

By default, the Lynx build does not know where to find the shared libraries because the
installed location in your home directory is probably not in the default search path for shared
libraries. Even when defining where it is located with --with-ssl, the make will error out.

7. Prepare for installation:

$ make

This takes about 4.5 minutes on this build system.

8. To install the software, issue the command:

$ make install

This installation routine backs up any existing Lynx binary by renaming it lynx.old.

9. You may want to install additional Lynx documentation, following the suggestions that print to
the screen. Use these commands:

$ make install-help
$ make install-doc

The install-doc is not needed; it provides samples and Web pages for testing Lynx and is used pri-
marily by Lynx developers.

How It Works
This is a pretty straightforward install, following the steps exactly. The only difference was the use of
LDFLAGS (in step 6 of the preceding example) to tell make to compile in the location of the needed
libraries. For example, the --libdir option tells Lynx where the configuration file and local documenta-
tion will be stored.

Use ldd to see that Lynx does, in fact, use your own openssl libraries:

$ ldd ~/bin/lynx
libncurses.so.5 => /lib/libncurses.so.5 (0x40017000)
libssl.so.0.9.7 => /home/reed/openssl/lib/libssl.so.0.9.7 (0x40055000)
libcrypto.so.0.9.7 => /home/reed/openssl/lib/libcrypto.so.0.9.7

(0x40085000)
libc.so.6 => /lib/libc.so.6 (0x40177000)
libdl.so.2 => /lib/libdl.so.2 (0x40294000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000

358

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 358

The ldd tool is used to list the shared libraries needed to run a program. Notice that Lynx also detected
ncurses (for console screen functions) in the native system and is using the shared library for it.

Run the newly installed Lynx by typing:

$ ~/bin/lynx

Introducing make, Makefiles, and make
Targets

You don’t need to know how make works to simply use it for compiling and installing software, but
understanding make will help with troubleshooting and with porting software.

In addition to building software, make can also be used for managing Web sites and processing other
documents. Its main purpose is to ensure that the individual components are up-to-date. For example,
make is commonly used to compile many separate source code files and then to generate the final pro-
gram. A developer would not want to compile each file in a project over and over again when working
on just a single file. make helps solve this by only rebuilding the pieces that have been updated. The
rules defining the steps needed are placed in a makefile (as noted previously, usually named Makefile).

As mentioned earlier in this chapter, there are several different types of make. They have some common
syntax and usage but also offer their own incompatible custom features and configurations. On Linux
systems, make is GNU Make. On BSD systems, make is a BSD Make usually called pmake, but also
known as bmake. FreeBSD, NetBSD, and OpenBSD all maintain their own versions of the BSD Make, so
they have slight incompatibilities. GNU Make (also known as gmake) can also be installed on BSD sys-
tems and is available via their package collections. You can also build and install GNU Make from
source; get the files at ftp.gnu.org/pub/gnu/make/. On Mac OS X and Darwin systems, both bsd-
make and gnumake are installed, and make is a symlink to gnumake by default.

Just to confuse you further, the imake tool from XFree86 or X.org and qmake from QT are not make
programs. They are used to generate makefiles, but perform no other tasks associated with regular make
programs.

Some projects require a specific version of make, but most makefiles are written in a portable, standard
format. If you receive an error like this

Makefile:18: *** missing separator. Stop.

when running make, it may mean that you are using a GNU Make and should use a BSD Make instead.
However, if you see an error message like this

make: don’t know how to make something. Stop

you should probably be running GNU Make instead of BSD Make.

It is a good rule of thumb to just use GNU Make because it is the most commonly used make for open
source projects.

359

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 359

The Makefile
The syntax of a makefile can, at times, be very detailed and confusing. Basically, the makefile is made up
of variable definitions and targets. A makefile can also have comments, which start with hashmarks (#).

As you learned in Chapter 5, variables are defined by assigning some value to the variable identifier.
Commonly, variable names are all uppercase, but it is not required. There are several ways to define a
value. Let’s look at some of the common ones. Assigning a value with an equal sign, for example, means
that the previous value is overridden:

SHELL = /bin/sh

You can append a value with plus-equal (+=) signs:

CFLAGS += -s

This also places a space before the new value. Spaces are ignored when assigning variables (but often
make it more readable), so you could use CFLAGS+=-s to do the same thing.

If a variable is already defined, using question mark–equal (?=) ensures that it isn’t redefined. In the
following code line, for example, if CRYPTO is not already defined, this command sets its value to yes
(otherwise it keeps its previous setting):

CRYPTO ?= yes

Variables are referenced by using $(NAME) or ${NAME}. make uses a concept called expansion, where the
value of variable is not figured out until it is referenced.

Define targets (also know as rules) by placing a keyword at the start of a line, followed by a colon. The
following lines list shell commands to be used when processing that rule. Each of these commands must
be indented with a tab (not spaces). For example:

showmetheday:
→@date +%A

The at sign (@) means to show the output but not print the command’s name. (Chapter 11 has more
details about the date command.) If you put this target in a makefile, and then ran make on a Friday,
you’d get this output:

$ gmake
Friday

Usually, the main target is named all and is the first rule defined. The install target is also commonly
used. You can choose to run a particular target and specify it at the command line, as in:

$ make showmetheday
Friday

360

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 360

Here’s an example that uses BSD Make with a target that doesn’t exist:

$ make whatever
make: don’t know how to make whatever. Stop

make: stopped in /home/reed/tmp

Because the specified target doesn’t exist, the make process exits with an error message.

A target can list other targets after the colon to have those dependencies done first. Take a look at the fol-
lowing makefile. It’s a simple example of having rule dependencies and defining a variable on the same
command line:

This is an example Makefile
MYVARIABLE?= alphabet soup

all: rule2
→@echo This is the “all” target.

rule1:
→@echo Hello from rule 1

rule2: rule1
→@echo $(MYVARIABLE)

Remember that those are tabs (indicated by right arrows) in the target bodies and not spaces.

Now run the process. Notice how it uses the top target as the default:

$ gnumake
Hello from rule 1
alphabet soup
This is the all target.

As you can see, it set the variable because the variable did not already have a defined value. Then make
completed the first target, which had dependencies. You can also issue the make command choosing the
target you want to run:

$ gnumake rule1
Hello from rule 1
$ gnumake rule2
Hello from rule 1
alphabet soup

The next example shows how to define a make variable by placing it on the command line as an argu-
ment to make:

$ gnumake MYVARIABLE=”Unix is fun”
Hello from rule 1
Unix is fun
This is the all target.

361

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 361

You can also set the variable in this example in your Unix shell environment instead of using a make
argument. (See Chapter 5 for more details on defining shell and environment variables.) For example:

$ MYVARIABLE=whatever
$ bsdmake rule2
Hello from rule 1
whatever

Here’s another example of a target that doesn’t exist:

$ gnumake help
gnumake: *** No rule to make target `help’. Stop.

Although these examples are quite simple, make can be used to do a great deal. The make configuration
syntax is basically a programming language. For example, it can do if/else conditionals, pattern match-
ing and replacing, and a lot more. Normally, make is used to run GCC for compiling and linking soft-
ware and then installing the software.

Tools to Help Create Makefiles
A popular suite of development tools is available to help create configure scripts and makefiles. These
tools are often called auto tools, or the GNU Build System. Remember that the configure script is
used to detect your build system environment to customize how the software is built and installed.
The configure script generates a makefile or many makefiles from templates. The purpose of the
configure script is so that you should never have to manually edit makefiles, simplifying the process
and saving yourself a lot of time.

In most cases, as a software end-user, you do not need the auto tools. They are primarily used by the
original developers. But sometimes you may have source code (such as prerelease software) that doesn’t
have the configure script or makefile templates. Auto tools can be of great help in getting such code to
install properly. Here are some of the key auto tools:

❑ automake is the tool used to generate makefile templates, which are later used by configure to
create the final makefiles. The original files are named Makefile.am. The templates generated
by automake are then called Makefile.in.

❑ autoconf is the tool used to create the portable configure shell scripts. The input for
autoconf is a configuration file called configure.ac or configure.in. The developer
may also include add-on features for defining autoconf macros, usually named acsite.m4
and aclocal.m4. In many cases, a config.h.in file is used by configure to generate a
config.h header file defining features or capabilities to be used during the build.

In addition to makefiles, configure scripts also output config.status (a shell script that
actually generates the makefiles and header files), config.cache (which records the results
of the numerous configure tests), and config.log (which contains output and debugging
information).

Also related to autoconf and the configure scripts are the autom4te files config.guess
(which figures out the exact hardware platform, operating system type and version) and
config.sub.

362

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 362

❑ libtool is a tool to help create shared (and static) libraries in many different object formats
using a variety of tools on various systems. It is useful for creating and installing portable and
standardized libraries that can be utilized by unrelated projects.

Files related to libtool include ltconfig, a script for generating the system-specific libtool;
ltmain.sh, which provides the library building routines; and ltcf-c.sh, which is used by
ltconfig to select the correct options and arguments for the the systems compiler when mak-
ing libraries. Files ending in .la are libtool library files; they are plain text files that define
many attributes of the related libraries.

Another software building tool that is getting more use is pkg-config., which provides meta-informa-
tion about installed libraries. Learn more at www.freedesktop.org/Software/pkgconfig.

Sometimes, you may find software that doesn’t already include a configure script but does provide
the autoconf files to generate one. Be sure to check the build instructions. The source may include an
autogen.sh script that can be run to generate and then run the configure script. In other cases, you
may need to run multiple automake and autoconf commands manually to create the configure
script, as in this command sequence:

$ aclocal
$ autoheader
$ automake -a --foreign -i
$ autoconf

It is important to note that different versions of automake and autoconf are in use, so some features are
not available or may be used but aren’t supported. (For example, you may receive errors that indicate a
given macro can’t be found.) Again, be sure to read any build instructions (or ask the developers) to
make sure you are using correct versions of automake and autoconf.

One of the problems with software using the auto tools system is that they include a lot of large pregen-
erated files that are sometimes difficult to modify. When new versions of autoconf and automake are
released with improvements and fixes, already released software with pregenerated and old configure
scripts cannot easily take advantage of these fixes. You may need to download newer versions of that
software to take advantage of the new auto tools.

GNU Compilation Tools
When you install software from source code, part of the process involves compiling the code so that
it’s executable on your system. A wide range of compilers can be found to work with code written in
almost any language. On Unix-based systems, however, you can get by with GCC and its associated
compilation tools.

GCC is more than just the C compiler: It is the GNU Compiler Collection. The GCC suite includes sup-
port for C, C++, Objective C, Java, Fortran (F77), and the Ada language. GCC is highly portable and well
used — nearly 100 percent of all open source projects using C or C++ use it. GCC can be used for cross-
platform builds such as building software for different operating systems and/or hardware architectures
using a different host platform.

GCC probably installed by default when you installed your operating system. If you don’t have it or you
want an updated version, see www.gnu.org/software/gcc/gcc.html.

363

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 363

The GCC tool is a front-end for controlling several other tools used in the compilation process, such as
the cpp preprocessor, a compiler (like cc1 or cc1plus), an assembler, and a linker. Because gcc is a
front-end to several tools, it has more than 500 command-line options that can be used with it.

The most commonly used assembler (the portable GNU assembler as) and linker (the GNU linker ld,
which can be used to combine library archive files) are provided with the GNU Binutils suite. GNU
Binutils also supplies tools for modifying libraries (ar), listing symbols (nm), displaying object file infor-
mation (objdump), generating archive indexes (ranlib), and listing section sizes of object files (size).
If you don’t have Binutils, download it at www.gnu.org/directory/binutils.html.

The strip and strings tools are also provided with GNU Binutils. The strip command is used to strip
out symbols such as debugging information from object files. It can be used to significantly reduce file
sizes. The strings command is used by many Unix administrators for outputting the printable charac-
ters in files. For example, if you have some binary file or proprietary document format, you can filter it
through strings to display just the human-readable content.

As mentioned in the previous section, automake, autoconf, and libtool help set up the build
environment for running gcc and linker. Building software and libraries can vary a lot between
different Unix versions and, in most cases, a configure script and makefiles are available already so
you don’t have to figure it out.

diff and patch
Some developers delay their official releases and only provide patches for recent security issues and bug
fixes. Also, some projects provide updates in the form of patches to save bandwidth and time. Other
developers provide patches for add-ons, new features, or other improvements for projects that they
don’t maintain themselves. Knowing how to use patch and diff can be very helpful in these situations.
diff is the command used for comparing files; its output is called a patch. The patch command can use
this diff output to modify a file (or several files).

The cmp command can also tell you whether files are different, but diff is more useful because it tells
you how they are different and provides information that can be used to recreate the differences.

For example, to view the differences between two files, use the command diff old.file new.file,
as in:

$ diff motd.orig motd
5,7c5,6
< Please note that the library will be closed on Saturday for
< construction. Any books can be put in the box outside. Videos
< due on Saturday will have their due dates extended for two days.

> Student Board Elections begin next week. Be sure
> to vote on Tuesday or Wednesday!

The less-than sign (<) means that the line is in the first file (motd.orig) but not in the second file (motd).
The greater-than sign (>) means that a new line was added to the second file.

Commonly, patches are created using the diff -u switch for unified output. Many users consider uni-
fied output to be easier to read:

364

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 364

Unified output is another representation of the changes between two files. Perhaps the most significant
difference between diff and unified output is that unified output provides the context. Some develop-
ers prefer unified output for distributing patches because of some irregularities that can occur with
diff. There is an excellent reference for gnu diff utilities at www.kcl.ac.uk/humanities/cch/
ma/courses/acmtls/gnu/diff.html (nearly 80 printed pages).

$ diff -u motd.orig motd
--- motd.orig Mon Sep 27 10:21:14 2004
+++ motd Mon Sep 27 10:21:07 2004
@@ -2,8 +2,7 @@

Welcome to the University Shell System!

-Please note that the library will be closed on Saturday for
-construction. Any books can be put in the box outside. Videos
-due on Saturday will have their due dates extended for two days.
+Student Board Elections begin next week. Be sure
+to vote on Tuesday or Wednesday!

To get help on using this system, type “help” and press Enter.

As you can see, the -u switch adds more context by including the lines that precede and follow the
changed content. Lines beginning with a minus sign are only in the original file, and lines beginning
with a plus sign were added to the new file.

If you need to view the differences between many files, some of which are contained within subdirecto-
ries, use the command diff -ruN directory1 directory2. The -r switch causes diff to recur-
sively compare subdirectories. The -u switch causes output to print in the unified format. The -N option
allows diff to compare files that don’t exist in the other directory (by having it act as an empty file for
the other directory).

There are many options for diff output. Be sure to read the diff manual page for more details.

The output of diff includes line numbers to indicate where the changes are located. The patch com-
mand can use the diff formats to update files, and even to create new files. The normal way to use
patch is to go into the directory containing the files to be patched and then run patch with the diff file
output (the patch) as its standard input. The patch tool also has other useful options, such as the capa-
bility to save the original files before patching them in case of a problem.

Installation Techniques for Better
Maintenance

The main problems with installing software from source include cleaning up old files, upgrading to new
versions, runtime configurations, remembering build steps and build configurations, and keeping track of
dependencies. Dependencies occur when a program requires functionality provided by other software.
For example, psmerge (a tool for merging Postscript files from the psutils project) is a Perl script. It has
a dependency — a need — for Perl to be installed on the machine.

365

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 365

The more difficult situations occur when the dependencies are shared libraries. A lot of GNOME soft-
ware uses GConf libraries, for example, but some versions of GConf are incompatible. If you upgrade
GNOME-related software, the new packages could break because of a wrong version of a required
library. Alternatively, if you upgrade GConf, you could break GNOME. You might think that it’s only
one dependency and would be easy enough to fix. However, depending on the GNOME software, you
may have more than 60 different dependencies! Keeping track of software can get a lot more difficult.

One technique is to have all the software for a particular project installed to a directory that’s named for
the software and version number. For example, for configure-using builds, you can use the command
./configure --prefix=/opt/name-version to have it install to /opt/name-version. Then you
can upgrade different dependencies without overwriting anything, because the same software will be
installed to different directories based on the version numbering. You can upgrade any programs that
use the components by using ./configure switches (and environment variables) to tell the builds
where their dependencies are located.

This technique is very useful for software used constantly in production environments. You can have
your Apache Web server running in /usr/local/httpd-2.0.49/bin/httpd, for example, and then
configure a new build to install to /usr/local/httpd-2.0.51. Modify the configurations under
/usr/local/httpd-2.0.51/conf/ (based on the old configurations), and you can easily switch back
and forth for testing and then for real production use. It is also very useful to install software packages
to their own directories when you need to copy to other systems, so you don’t have to build from source
again. Just tar up the directory, transfer it to the other machine, and unpack the files into the same direc-
tory hierarchy.

You can also use symbolic links, or symlinks, to populate a bin directory (such as /opt/bin or
/usr/local/bin) and man directories in your PATH so you (and your users) can easily run the com-
mands and use the man pages:

Symbolic links were discussed in Chapter 4.

$ cd /opt/foo-1.2.3
$ for file in bin/* sbin/* man/*/* ; do ln -sf /opt/foo-1.2.3/$file /opt/$file;
done

In rare cases, you may have identically named files provided from different projects, so you may have to
employ the full path names to use the correct versions.

If you want different versions of the same software to use the same configuration directory, you may be
able to use the configure option --sysconfdir to point to the correct path. Be aware that, in some
cases, a new installation may overwrite your configurations; in many cases, newly installed configura-
tions may break your currently running software because of new features and incompatibilities.

Software using configure scripts and the GNU Build System can often be installed to a different loca-
tion than the default destination by using the DESTDIR variable. For example:

make install DESTDIR=/tmp/abc-3.4.5
cd /tmp
tar cvzf abc-3.4.5.tar.gz abc-3.4.5

(You would replace abc-3.4.5 with the software name and version.)

366

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 366

In this example, the installation process places all the files into a separate directory, which is then tarred
up to be reused on other systems or for reinstalling on the same system.

In many cases, paths are hard-coded into executables or documentation and other files, so the software
should ultimately be installed to the same location as defined with the configure --prefix option.

Troubleshooting Build Problems
This book can’t possibly list every single error or problem with building and installing software from
source. You can have disk space errors, out-of-memory errors when building, wrong switches used with
gcc for building libraries, incompatible libraries, missing headers, and numerous other problems. Here’s
an example of a failed configure step:

checking for iconv_open... no
checking for iconv_open in -liconv... no
configure: error: Blackbox requires iconv(3) support.

An error like that can mean several things: A library is actually missing, configure is looking in the
wrong place for the library, configure detected it wrong, or the process failed elsewhere during its
iconv detection. When you receive errors from a configure script, it is often useful to look at the new
config.log file.

When you find error messages, it is a good idea to search your favorite search engines and Google
Groups (http://groups.google.com/advanced_group_search). In most cases, someone else has
already had the same or similar problem — and hopefully it’s already solved.

Also, check the project’s build FAQ, usually found on the project Web site, or consult the project’s appro-
priate mailing list for assistance. When using a mailing list, be sure to explain clearly what your final
goal is, what specific versions of related software you are using, what steps you followed, what the exact
error messages or problems are, and what other steps you took to troubleshoot the problem. Including
all this information makes it more likely that someone can help you.

Precompiled Software Packages
Often it is easier and less time-consuming to just install precompiled software packages as provided by
your operating system vendor (or packages provided for your operating system). Packages are ready-to-
use software bundles for individual projects or programs. A package usually contains the executables,
sample or basic configurations, documentation, and supplementary data files. Packages also contain
metadata that gives information such as a brief description of the package, who or where it was built,
what it provides, and what packages it depends on (if any). Package systems usually provide tools for
installing software, automatically installing prerequisite packages, displaying packages installed, listing
available packages, displaying file lists, removing packages, retrieving packages, verifying installed files,
providing package security notifiers, and a lot more.

Numerous packaging systems and techniques are available. Two of the most commonly used in the open
source community are RPM and Debian’s DPKG format. RPM previously stood for Red Hat Package

367

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 367

Manager, but now it is the recursive acronym, RPM Package Manager. The RPM tool and RPM-style
packages are available for many operating systems, such as Mandrakelinux, SUSE, and Fedora Core.
This system is also used by OpenPkg. The RPM tool is available for all Unix systems. DPKG format is
primarily used with Debian GNU/Linux and Debian derivatives. Historically, the problem with RPM
was that automatic updating of dependencies was weak. Debian provides a tool, apt-get, that has been
very useful for installing and cleanly updating packages. It has been extended to work with RPMs also.
(Red Hat and other systems using RPM also use Yum, Up2date, and other update systems.)

The Fink program on Mac OS X is a front-end to apt-get as well as a collection of software organized into
sections, much like the ports collections mentioned in the following paragraph. The Fink software collection
includes patches to ease the installation process on Mac OS X, automating the application of diffs and cor-
recting various paths to libraries, which differ on Mac OS X from the locations on other Unix systems. For
more information about Fink, check the project’s home page at http://fink.sourceforge.net/.

The BSD operating systems provide build-from-source package systems. FreeBSD and OpenBSD call
theirs ports, and NetBSD maintains Pkgsrc (package source). These are directories of specifications and
descriptions of numerous software suites. (FreeBSD provides specifications for more than 10,000 differ-
ent software suites, representing hundreds of thousands of files.) pkgsrc is a portable package building
system for Linux, NetBSD, Darwin, Mac OS X, Irix, SunOS/Solaris, AIX, HPUX, BSD/OS, FreeBSD,
Windows (with Unix add-ons), and other Unix-like operating systems. These build systems basically
automate the entire build-from-source system with many functions:

❑ Fetch source code and any patches

❑ Verify source code against prerecorded digest checksum

❑ Recursively install any build or runtime dependencies

❑ Patch the source code as needed

❑ Configure the source code for the particular operating system

❑ Build the source

❑ Install the software and related files

❑ Create packages (tarballs plus metadata) to use elsewhere or for reinstallations

Some operating systems like Gentoo Linux use similar build-from-source systems. Build-from-source
systems can be quite slow compared to using the prebuilt, ready-to-use packages, but still can save a lot
of time over building from pure code. For example, to install KDE from FreeBSD ports without any pre-
requisites installed could take a few days on many systems.

It is often a bad idea to mix and match software built from source and from packages to solve dependen-
cies, especially when you force a package to install (using RPM’s --nodeps, for example) when a pack-
aged requirement is not installed. This is because some of the requirements or features provided with a
package may not meet the other software’s needs.

Let’s take a quick look at how to use the RPM tool to first check for the software you want and then
install a package that’s been downloaded.

368

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 368

Try It Out Use RPM
1. Type in the following at the command line:

$ rpm -qa | grep mysql
mysql-server-3.23.58-9.i386

Depending on your individual setup, you will get either some output showing which version of
MySQL you have on your machine or, if you don’t have it at all, nothing.

2. To install a new version of MySQL, download the relevant RPM package from the MySQL site
(via http://dev.mysql.com/downloads/mysql/5.0.html) and save it to a folder of your
choice.

3. Issue the following command

$ rpm -Uvh MySQL-server-5.0.2-0.i386.rpm
Preparing... ####################### [100%]
1:mysql-server ####################### [100%]

That’s pretty much it! It is installed!

How It Works
There’s a lot you can do with RPM; consult the man page for more information. In this exercise, the –qa
option got RPM to query all the installed package files, and then the output was piped to grep so that it
could search for anything containing the string “mysql.” This simply demonstrates a different method
for using RPM.

Next, RPM was used to install a new version of MySQL from the RPM package. Notice the–Uvh options,
which are most commonly used when installing with RPM. The U updates RPM to the latest version,
v makes the output verbose, and h causes a row of hashes to be printed to track progress.

Be aware that RPM fails if there are dependency conditions that are not met during the installation. For
example, if your new version of MySQL depends on another package that isn’t already installed, the
installation won’t be successful. Having to keep track of everything’s dependencies and versions can get
pretty tedious, and it is recommended that you look for tools that can help with automating updates
and so on. For example, Yum, which comes as a standard feature of the Fedora Core (http://fedora.
redhat.com/), automatically figures out not only the RPM packages that need updating, but also all the
supporting RPMs — and installs them all.

Summary
Building software from source is a common method for installing software on Unix-type systems. For
many programs, it is the only way, because ready-to-use, already-built software may not be available.
Also, many timely security updates or other software fixes are often available only in source code form.
The most important things to learn how to do in building software from source:

❑ Finding and downloading source code files

❑ Extracting source code archives

369

Installing Software from Source Code

22_579940 ch19.qxd 3/21/05 6:14 PM Page 369

❑ Locating and reading the build and installation instructions

❑ Configuring the build scripts and/or specifications

❑ Building the software

❑ Installing the software

❑ Cleaning up the build files

The skills used to build and install software from original source code can be used on a wide variety of
Unix systems.

Exercises
1. On your Unix-based system, you need a program to fetch your IMAP-based e-mail. After

searching using your favorite search engine, you decide on installing Fetchmail.

a. Download the Fetchmail source.

b. Extract the source tarball.

c. Read the installation (from source) directions.

d. Configure the build.

e. Build the Fetchmail software from the source.

f. Install Fetchmail to your system from this completed build.

g. Extra credit: Configure Fetchmail to retrieve your e-mail.

2. You need to install a simple Web server that will be rarely used. You decide to use the
inetd-based micro_httpd.

a. Locate and download the source code for micro_httpd.

b. Extract the source tarball for micro_httpd.

c. Review the installation instructions.

d. Build the software using make.

e. Manually copy the man page and the new executable into place.

f. Extra credit: Configure inetd or xinetd to run micro_httpd.

370

Chapter 19

22_579940 ch19.qxd 3/21/05 6:14 PM Page 370

20
Conversion: Unix for

Mac OS Users

Apple has provided a graphical user interface (GUI)-based operating system for its users since
the introduction of the Macintosh computer in 1984. While much has changed under the hood
between 1984 and today, the current version of the Macintosh operating system, Mac OS X, pro-
vides the user with a GUI interface that is quite elegant and powerful, while retaining a friendly
almost childlike simplicity on the outside. Underneath the candy-coated interface, however, is a
completely different engine. While a proprietary engine powered previous iterations of the
Macintosh operating system, Mac OS X is powered by Unix.

This chapter aims to discuss the changes to the operating system with two different audiences:
long-time Macintosh users who are getting started with Mac OS X/Unix as well as Mac OS X users
who are interested in other Unix systems. This chapter uses Mac OS X as its reference Unix plat-
form, as it is most likely that Macintosh users who are still using classic versions of the operating
system will soon upgrade their systems to Mac OS X, either on their current computers or cer-
tainly when purchasing new equipment. Additionally, the information in this chapter will prove
useful to long-time Unix users who are interested in working with Mac OS X.

A Very Brief History of Mac OS X
The Macintosh operating system was due for a serious overhaul by the end of the 1990s. Apple
had attempted to create a new version of the Macintosh operating system that was to be called
Copeland, which would bring desirable modern features to the long-in-the-tooth Mac OS 7. This
effort proved to be more of a challenge than it had initially appeared to be, and eventually Apple
made the decision to go outside the company and purchase the new OS. There was a brief flirtation
with the BeOS, which was produced by Be Inc. — a now-defunct corporation founded in 1991 by
Jean-Louis Gassée and Steve Sakoman, both former Apple executives. This plan ended up being
scrapped in favor of NeXT Software, a company run by another former Apple executive, Steve Jobs.
Apple purchased NeXT Software for approximately $400 million, around the end of 1996. NeXT
was a company that manufactured computers from the late 1980s thru the early 1990s. NeXT went
on to sell its operating system (NeXTStep, and later OPENSTEP) as well as WebObjects software for
x86, HP, and Sun hardware for several years after getting out of the hardware business.

23_579940 ch20.qxd 3/21/05 6:14 PM Page 371

When the first NeXT computer was shipped in 1998, it was a technical marvel. It ran on a 33 Mhz
Motorola 68030, making it faster than any existing Macintosh- or Intel-based PC on the market. It
boasted a clean, elegant GUI that straddled a Unix core. This system was targeted at the education mar-
ket and was the first PC system to include a networking feature, and leverage the power of network
communications. The system was priced at $6000 base, about twice the cost of existing Macintosh or
PC computers at the time. The cost was a major factor in the lack of market penetration for the beautiful
black hardware.

The public beta of Mac OS X was released in 2000, and version 10.0 was released in 2001. From the early
days of Rhapsody (the code name for the public beta), it was clear to many that Apple had a strong con-
tender on their hands. The operating system retained the visual elegance commonly attributed to the
NeXTStep system, while keeping its Macintosh look and feel. There were several apparent differences
between this Mac OS and previous versions, such as a dock on the desktop and the absence of the famil-
iar trash can on the desktop (it had been moved to the dock). However, for the most part, excepting the
addition of eye candy in the form of the all new Aqua interface, the system was visually similar to prior
versions of the Macintosh operating system. Of course, the visual similarity was about the only thing
this version of the Mac OS had in common with the prior versions. Included with version 10.0 was soft-
ware called Classic. Classic is an application that, when launched, executes a software-based Macintosh
emulator. The user could have both MacOS 9 and Mac OS X installed on a hard drive, and using Classic
could launch the previous version of the operating system and run applications designed for that sys-
tem. Early users relied on this functionality to run older versions of their software while they waited for
the software to be released in Mac OS X native versions.

Today, Mac OS X leads the charge of Unix-based desktop systems, shipping more Unix-based desktop
systems than all other Unix vendors combined. For the majority of users of these systems, the Unix
underpinnings are all but invisible, providing increased stability and performance improvements, with-
out any penalty in complexity or in any way changing the perception that Macintosh systems are “easy
to use” and “just work.” Hardware and software integrate with the same plug-and-play simplicity that
Macintosh users have come to admire and expect.

Differences between Mac OS 9
and Mac OS X

There are many differences between the previous versions of the Macintosh operating system and
Mac OS X; most of these differences are under the hood, so to speak, and are invisible to users who
restrict their usage of the system to the GUI. However, several of the fundamental changes to the under-
lying system manifest themselves in ways that distinctly change the experience of working with a
Macintosh system, besides simply reducing the frequency of system crashes or the need to restart the
computer.

The most important distinction between the two systems is that Mac OS X is a multiuser operating sys-
tem, whereas Mac OS 9 was truly a single-user OS. Like all other Unix systems, the concept of multiple
users pervades all areas of working with Mac OS X. Even in a situation where you are the sole user of
the computer, and it is not connected to any network, there are still multiple accounts present on the sys-
tem. The accounts are added at installation time for various system daemons, which provide for privi-
lege separation and accounting. An example of such a user is eppc, the remote AppleEvents service; and
at install time a user named eppc is created. This user has neither a shell nor home directory (home

372

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 372

directories are discussed later in this chapter). However, eppc exists for logging and other purposes.
Additional pseudo-users exist for postfix, cyrus, lp, mailman, MySQL, qtss, smmsp, sshd, and the
catchall daemon and unknown accounts.

Additionally, differences exist in the organization of folders on the hard drive. Whereas previous versions
of the Macintosh operating system were quite flexible and forgiving regarding the names and locations of
folders on the hard drive, Mac OS X has stricter requirements on folder placement, especially at the root
level of the boot hard drive, where the operating system is installed.

The other major difference between Mac OS X and previous versions of Mac OS involves administrative
activities and privileges. Because Mac OS 9 and below were single-user systems, there was no restriction
placed on accessing files and folders or on making changes to the system configuration. As long as you
had access to the computer, you could make whichever changes you desired. Mac OS X has a stricter
security model, where privileges are granted to an administrative user who can delegate or grant access
to files and folders as well as change system settings. Additionally, as a result of the presence of multiple
users on the system (or the possibility that there might be more than one physical user), system-wide
settings and preferences are becoming less common. Whereas Mac OS 9 and earlier had a single prefer-
ences folder where application settings would be stored, you will see that Mac OS X has preference set-
tings for each user on the system.

Folders Are Directories Too
Historically, the Macintosh OS has presented groups of files nested in a directory to the user as folders.
This has been part of the visual metaphor of the Macintosh OS since the origination of the operating sys-
tem. The Finder in Mac OS X also uses folders and refers to them as such. However, in Unix operating
systems, folders are usually referred to as directories. This stems from the command-line origination of
Unix, where there was no need for the iconic reference. While working with Mac OS X, you will see ref-
erences to both folders and directories. Both are correct, and neither is any more or less accurate than the
other. You can use whichever terminology you are comfortable with. Generally you will use folder when
referring to Finder-based views of your files, along with other GUI-based operations, and will use the
term directory when referring to terminal and other command-line operations.

The major difference between Mac OS X (and Unix in general) and Mac OS 9 with regard to folder and
directory navigation is in the command-line interface. Many users of previous versions of Mac OS have
used AppleScript or other scripting languages to navigate the file system. For those users, folders were
separated by a colon (:), as in Macintosh HD:System Folder:Preferences. Unix and Mac OS X use
the forward slash (/) character as a delimiter, as in /Users/craigz/Desktop. Additionally, when using
classic versions of the Mac OS, file path names would begin with the volume label, as in the following
example: Macintosh HD:Users:craigz:Desktop. However, Unix has its own way of referring to the
boot volume, and that is the forward slash (/) character. Hence, the same example in Mac OS X would
be /Users/craigz/Desktop. These differences are of no issue when using Finder to navigate the file
system, although they become quite important when using the terminal to navigate the file system, or
when working on other Unix systems, as the colon-based navigation generates error messages. Keep in
mind that, while on Unix, everything falls under the common root directory (which is termed /), and
which is the leading character in all path names. On Mac OS X, different hard drives can have different
labels, such as Macintosh HD and HardDisk. Finder displays additional volumes on the desktop, how-
ever, in Terminal, additional volumes are located in a hidden directory: /Volumes.

373

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 373

Required Folders
In classic versions of the Macintosh operating system, only one folder is required for the system to boot
properly: the System folder. In fact, you could remove most of the contents of a System folder, leaving
only the files Mac OS ROM, Finder, and System, and a classic Mac OS machine would boot normally,
albeit in a depreciated state. Mac OS 9 has traditionally been quite flexible regarding folder names and
locations. In developing Mac OS X, Apple has imposed a bit more organization upon the structure and
naming of folders, especially at the root level. This is mostly out of necessity, because a Unix-based system
requires certain things to be organized in a certain way. You will find that this does not cause much practi-
cal difference in the way you work with the system; however, you will need to be aware of this difference.

In Mac OS X, there are four permanent folders created at installation time. These folders are created
when you install Mac OS X, and you are unable to move, delete, or rename these folders, because they
are essential to your machine’s operation. These folders are Applications, Library, System, and Users, as
shown in Figure 20-1.

Figure 20-1

There are several other folders installed at installation time that are either Unix-specific or are related to
network functionality, such as Network, Volumes, and the standard Unix folders such as etc, bin, sbin,
tmp, usr, and var. These files are hidden from display by the program Finder, because they are generally
not necessary for day-to-day use, and not displaying them keeps the frustration and confusion level to a
minimum. For a complete list of the folders that are present on the boot drive, but are invisible to Finder,
consult the file .hidden, which is at the root of your boot volume. This file is also hidden from Finder,
because Finder (like the Unix command ls) does not show files or folders named with a period as the
first character.

The following sections describe these folders as well as explain their purposes.

Applications
The Applications folder is designated to hold applications. All applications installed by Apple as part of
the Mac OS X installation are installed in this folder. All applications in this folder are available to all
users on the system. If you wish to limit the usage of a specific application to a single user, then install
that application in the Applications folder within that user’s home directory. The home directories are
discussed later.

374

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 374

Within this folder is a folder called Utilities, where Apple installs applications of a utility nature at the
time Mac OS X is installed. Examples of Utility software are the Disk Utility, Print Center, Installer, Console,
Activity Monitor, Network Utility, NetInfo Manager, Console, and Terminal Applications, along with sev-
eral other programs that can be used to configure, monitor, and maintain various aspects of your system.

Library
The Library folder is loosely equivalent to the Preferences folder contained within the classic Macintosh
System folder. The Library folder is an example of the modular nature of Mac OS X. There is no formal
requirement or definition for the contents of this folder. Application preferences, fonts, printer drivers,
shared code libraries, and items of an informational nature (generally informational to the system) are
all the types of files that are stored in the Library folder. In fact, there are three different locations where
Library folders exist on a Mac OS X system. This location at the root of the boot drive contains files that
are accessible to all local users on the system and that can be modified only by a user with administra-
tive rights on the system. Additional Library folders exist in the System folder discussed later, as well
as in User home directories also discussed in a later section. Files in the Library folder of a user’s home
directory are only available to that user.

System
This folder is roughly equivalent to the System folder on a classic Macintosh system. This folder contains
a single folder called Library. This folder contains folders that are similar to those in the main Library
folder, discussed previously; however, this location is reserved for Apple software and should not be
modified. If there is any folder on the computer that screams “Hands Off!” it is this folder. While an
administrative user can make changes to files in the System folder, it is highly advisable to avoid doing
so, as it is quite likely that Apple will make changes to files in this directory over the course of software
updates, so any changes to files in this directory could be overwritten at any time.

Users
The Users directory is probably the most significant change to the operating system from the point of
view of a user. Previous versions of the Macintosh operating system have included various stabs at mul-
tiple users but have never come close to the Unix standard of multiuser operating system that is embod-
ied in Mac OS X. Mac OS X is a truly multiuser system, as discussed in the beginning of this chapter.

Each file and folder on a Unix system belongs to a specific user and group. The user who creates a file is
considered to be the file’s owner, and, as the owner, the creator can decide whether other users can read
or edit that file. Furthermore, each file or directory belongs to a group, which is similar to the owner,
except that where an owner can only be a single individual, a group can contain more than one member.
When Mac OS X is installed, two groups are created by default. These groups are staff and admin. All
users created on the system are members of the group staff. Users granted administrative rights, either
when the system is installed or at a later time, are added to the group admin. By setting files or folders to
be accessible by one or the other of these groups, you can control access to those files to these classes of
users. To further refine access to your files and folders, you will need to create groups and assign users
to those groups. For a more detailed discussion of users and groups in Unix, please refer to Chapter 3.
The Users directory is the location where all users’ home directories are located on the system.

375

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 375

Other Folders
Also the folder Developer will be present if the Developer Utilities have been installed. Additionally, if
Mac OS 9 is installed on your system, you will see several folders that relate to that operating system.
These folders are:

❑ Applications (Mac OS 9) — This folder is where applications written for the classic Macintosh
OS are installed. If you have upgraded your system to Mac OS X, you will find your previous
applications in this folder.

❑ Desktop (Mac OS 9) — This folder contains the desktop folder from classic versions of the
Macintosh OS. If you have upgraded your system to Mac OS X, you will find your previous
desktop items in this folder.

❑ System Folder — This folder is the System folder from classic versions of the Macintosh OS.
The application Classic will use this folder to boot the emulator.

Home Directory
Your home directory is the place on your computer where everything is personal. Everything in this
folder is yours and yours alone. This is the place where you can customize everything to your heart’s
content and rest assured that whatever you do will not affect either the normal operation of the machine,
nor other users’ experience with the system. Your desktop and all the files and folders contained on your
desktop reside in a folder called Desktop in your home directory. You can install your own fonts in the
Library folder and they will be unseen by other users on the system. This folder is most like the top-level
Macintosh HD on Mac OS 9 and older versions of the Macintosh OS. In this folder you can create folders
to your heart’s content, you can name files anything you like, and you will never be interrupted by an
authentication dialog.

Apple has made a great effort to help you keep things organized throughout the system in Mac OS X.
Your home directory comes prepopulated with several folders that have been created by default at the
time your account was created. Most computer users create and use similar types of files, which could
be loosely typed as multimedia. Apple has created several folders as recommendations for where to
keep such common file types as music, movies, and pictures. Additionally, there is a catchall folder
called Documents, which could be used for any and all files. The contents of a user’s home directory are
visible to only that user, with the exception of the Public and Sites directories described later. Any files
in the Sites directory can be viewed with a Web browser, if the Web server is enabled on the local system.
The purpose of the Public directory is to make files available to other users on the system and to network
users if file sharing is enabled.

These folders that are installed by default are shown in Figure 20-2 and are described in the list that
follows.

❑ Desktop — The files and folders in this directory are what you see on your desktop. This folder
has always been present on Macintosh computers; however, in the past it had been rendered
invisible by the Finder.

❑ Documents — This folder exists as a place for you to store documents and other things you
create. It exists as a suggestion and need not be used if you do not wish.

376

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 376

❑ Library — This folder contains contents that are similar to those in the other Library folders you
have encountered. Files in this folder are private and are available only to the user whose home
directory the folder is in. This is where personal preferences, fonts, screensavers, and so on are
stored. If you wish to make items accessible to all of the users on the system, they should be
kept in the Library folder at the top level of the hard drive instead.

❑ Movies/Music/Pictures — These directories are used as the default locations to save media files
by the various iLife applications (iMovie, iTunes, and iPhoto), and are a suggested location for
you to save similar types of files. You can ignore these folders or create folders within them,
whatever makes the most sense to you.

❑ Public — If you wish to share files with other users on your system or on a network, you can place
those files inside the Public folder within your home directory. Additionally, there is a folder called
Drop Box in this folder. Other users can put files in this folder for you but are unable to see the
contents of this folder for themselves. This is referred to as a blind drop, because it preserves your
privacy by not allowing others to see the contents within the Drop Box folder.

❑ Sites — Mac OS X includes the Apache Web Server software. If the Web server is enabled, any-
thing in this folder is served to Web clients. Your sites folder is visible at the following URL:
http://your-ip-address/~username, where your-ip-address is your computer’s IP
address and ~username is your username (for example, http://192.168.1.20/~craigz).

Although these folders have been installed by default, you can do anything you like in your home direc-
tory; you can use or ignore all of these folders. You can create additional folders in this directory and
name them anything you wish.

Figure 20-2

377

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 377

Administration
Again, the single largest change between previous versions of the Macintosh OS and Mac OS X is that
classic versions of the operating system provided what was fundamentally a single-user system. That
meant that by having access to the computer, you could really do just about anything. You could change
settings such as network settings, configure printers, set up file sharing, and see and change all files and
folders located anywhere on the computer. Due to the multiuser nature of Mac OS X, there are many
more restrictions as to what system settings you can change.

Apple uses the concept of role-based administration. Rather than require a specific account to be used
for administrative functions, the system allows for any authorized user to authenticate to the system to
perform maintenance tasks and other privileged functions. By default the initial user created at the time
of system installation is authorized to do this; however, that user can designate this authority onto any
other user he or she wishes in addition to himself or herself.

When you open most of the system preferences panels, you will see a lock icon on the lower left of the
window. In order to make changes to that setting, you are required to authenticate by entering the name
and password of a user with administrative privileges, as is shown in Figure 20-3.

Figure 20-3

378

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 378

Most traditional Unix software is configured by editing configuration files, some requiring administra-
tive access to change; Mac OS X applications are traditionally GUI-based, and each application generally
provides a Preferences menu item in the Application menu. By setting preferences in the GUI, the appli-
cation is thus configured. Preference files are discussed in the next section.

Preference Files
Applications typically store user-specified values that refer to settings, default behaviors, and other user-
specific information in a text file on your hard drive. The application can later refer to this text file to
look up the values that have been previously set when it is required, rather than to require the users to
make their desired customizations with each application launch.

Classic versions of the Macintosh operating system have historically saved these files in a special loca-
tion called the Preferences folder within the System folder on the hard drive. Historically, preference
files have been binary data files, which were not human-readable, or even editable without the use of
specialized software (ResEdit, for example). Mac OS X has changed both the format of these files and
their location.

Mac OS X applications utilize plain text files that are composed of values associated with a key. These
key/value pairs are stored in specially formatted files called Property Lists, which are created with the
file extension .plist. Property List files organize data into named values and lists of values. These files are
then formatted into XML, which allows for a uniform means of organizing, storing, and accessing data.

These .plist files serve the same function as preference files under Mac OS 9; however, by standardizing
the file format, it is possible to use either a text editor to edit these files, as well as to use applications that
can parse XML to provide a simpler way of editing these files. Apple provides a GUI-based tool for the
editing of .plist files as part of the Developer Tools, called Property List Editor, which is located in
/Developer/Applications/Utilities if the Developer Tools package has been installed. Contrast this
with the procedure required to edit Mac OS 9 preference files, which would involve hex-editing the pref-
erence files using the ResEdit application and determining the format chosen by each individual vendor.

Unix and Mac OS X/Mac OS 9 Command
and GUI Equivalents

Mac OS X provides a command-line interface to the system in the form of the Terminal application.
Many actions that can be performed in the Mac OS GUI can be performed by a Unix CLI command. The
following table shows how to convert from a Mac OS 9 (or earlier) GUI command to the equivalent Mac
OS X GUI action, what the equivalent Unix command is, a short description of the command, and what
chapter the command appears in.

On a standard Macintosh keyboard the Command key is marked with an Apple logo and a cloverleaf
symbol. This key is commonly referred to as the Apple key; however, Command is more commonly used,
and the Apple key is referred to as the Command key in the following table.

379

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 379

Mac OS 9 Mac OS X Equivalent Description Chapter

GUI Action GUI Action Unix Command

Select file in Select file in chmod Modify file Chapter 6
Finder and select Finder and select attributes
Get Info from Get Info from File
File menu, or menu, or press
press CMD + I CMD + I

Use Finder to Use Finder to cd Change Chapter 4
open folders open folders directories

Look at title Look at title bar pwd Show current Chapter 4
bar of window of window working directory

Disk First Aid Disk Utility fsck Scan hard drives Chapter 4
for errors in files,
scan for damage,
and perform other
administrative tasks

CMD + D CMD + D cp Copy a file Chapter 6

Option + click on Click on menu date Change the date Chapter 11
menu bar clock on bar clock on top
top right of screen right of screen

and select Open
Date & Time

CMD + DELETE CMD + DELETE rm Delete or Chapter 6
(a single file) (a single file) remove a file

CMD + DELETE CMD + DELETE rm -R Delete the files Chapter 6
(a folder) (a folder) and directories

recursively

Double-click a Double-click a ls Show the contents Chapter 4
folder icon folder icon of a directory

SimpleText TextEdit vi (many others Perform text Chapter 7
exist, vi is the editing on
one that is most a file
likely to exist on
the system)

N/A Select Log Out exit Terminate the Chapter 2
from the Apple shell
Menu (Shift +
CMD + Q)

Drive Setup Disk Utility fdisk Partition hard Chapter 4
drives

380

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 380

Mac OS 9 Mac OS X Equivalent Description Chapter

GUI Action GUI Action Unix Command

CMD + F CMD + F grep (the Unix Search files for Chapter 8
command find words given as
only looks at an argument
filenames not
inside the files)

Select Help Center Select Mac Help man Show online help Chapter 2
from Help menu from Help menu files
in Finder in Finder

Select TCP/IP Select Network ifconfig Display and Chapter 16
from Control Pane in System modify network
Panels menu Preferences interface (shows
in the Apple Application IP address as well)
Menu

N/A Activity Monitor vmstat (Solaris), Display memory Chapter 14
top, free (Linux) statistics

CMD + N SHIFT + mkdir Create a directory Chapter 4
CMD + N

Drag folder to Drag folder to mv Move a file Chapter 4
new location new location

N/A LoginWindow who Display infor- Chapter 3
mation about
current users
logged into
the system

N/A Activity Monitor netstat Display network Chapter 16
statistics

N/A Network Utility nslookup Perform a host- Chapter 16
name lookup

N/A Network Utility ping Transmit network Chapter 16
packets to defined
host

CMD + P CMD + P lpr Print named file —

Select file then Select file then mv Rename a file Chapter 4
press Enter press Enter

Select as List from Select as List from sort Arrange data Chapter 8
Finder view menu, Finder view menu, either alpha-
then select descrip- then select descrip- betically or
tion bar to sort by tion bar to sort by numerically
that description that description

Table continued on following page

381

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 381

Mac OS 9 Mac OS X Equivalent Description Chapter

GUI Action GUI Action Unix Command

N/A Network Utility traceroute Display network Chapter 16
routes to defined
host

Option + click on Option + click on ls -R Recursively list Chapters
Disclosure Triangle Disclosure Triangle directory contents 4, 6
next to folder next to folder
icon in Finder’s icon in Finder’s
List View List View

Open the item with Open the item with cat Show the contents Chapter 6
the corresponding the corresponding of a file or
program program directory

Select About This Select About This uname -a Shows information —
Computer from the Mac from the about the current
Apple Menu Apple Menu operating system

version

Differences between Mac OS X
and Other Unix Systems

As you are well aware, Mac OS X is a Unix-based system. This is of great benefit to everyone, from those
who will never look at the Terminal application nor ever enter a single CLI command to the system
(who will benefit from the increased system stability and software availability) to those long-time Unix
users who will be able to enjoy the fruits of Apple research and development for the first time. Mac OS X
is a great platform upon which to learn to use Unix, and most of what applies on a Mac OS X system
will be transferable to other Unix systems, such as those that may be found at an ISP, workplace, or
other location.

While the core of the Mac OS X system is a FreeBSD variant, there are many things that are quite differ-
ent between Mac OS X and other Unix systems. The most important of these differences is apparent in
the area of system administration, specifically with regard to account creation and maintenance and sys-
tem startup.

Directory Services and NetInfo
Mac OS X inherits the concept of directory services from its predecessor NeXTStep. Because NeXTStep
was designed from the beginning to be a network-centric operating system, there were hooks in each
client system to consult a centrally located network resource for issues regarding authentication, access
to resources, printer configurations, and so forth. Each system could act alone or as a network client,
based on a local configuration, because each system had the NetInfo database and could be configured
to be either a standalone database or to act as a client of a NetInfo database running on another host.

382

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 382

While current versions of Mac OS X still use NetInfo, Apple is moving away from this proprietary
database, and toward open standards such as LDAP, using OpenLDAP.

The impact of directory services is that the traditional /etc files (passwd, group, protocols, etc.) are not
consulted by the system during normal operations. In rare cases, such as booting to single-user mode for
maintenance purposes, these files may be consulted, but this would be in a skeletal form, not the way
the system would be found in a production environment.

Traditionally, a Unix administrator would look to files in the /etc directory to either check how the sys-
tem is configured or to make changes. For example, the file /etc/group contains a list of groups on a
standard Unix system, and if you wish to add a user to a group, this file can be directly edited, the user
added to a line in the file, and the change is done. To make changes to a group on Mac OS X, the change
must be made to the NetInfo database. This can be done by a GUI-based application provided by Apple
called NetInfo Manager, which is shown in Figure 20-4.

Figure 20-4

383

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 383

Apple also provides a command-line interface to the NetInfo database, which can be used to list, add,
edit, and delete any entries in the NetInfo database.

In a standard Unix installation, configuration files are stored in the /etc directory. Mac OS X also has an
/etc/directory populated with the standard files. However, unless a configuration change is made to
directory services, these files will be consulted only in single-user mode and will be ignored during reg-
ular system use.

The standard Unix text files are referred to as flat files in the parlance of Mac OS X. If you wish to work
with information stored in NetInfo via flat files, you can use the utility nidump to export the data from
NetInfo to the corresponding flat file.

Using nidump and niload
For example, if you wish to create an /etc/passwd file using existing account information, you can type
the following command sequence:

$ sudo nidump passwd . > /tmp/passwd
$ sudo mv /etc/passwd /etc/passwd.old
$ sudo mv /tmp/passwd /etc/passwd

The first step creates an appropriately formatted password file in the /tmp directory. To be safe, make
a copy of the existing /etc/passwd file in the second step, then in the last step replace the old
/etc/passwd file with the newly created file. The period (.) character in the first command refers to
the NetInfo domain being manipulated, where the period refers to the local domain, rather than the
root domain, which is referred to using the forward slash (/) character.

Conversely, you can use the utility niload to take data from flat files and import it into the NetInfo
database. To import data from a standard password file located at /tmp/passwd.txt to the NetInfo
database, you can issue the following command:

niload passwd . < /tmp/passwd.txt

Prior to importing data from a flat file to the NetInfo database, you should edit the file and ensure that
there are no duplicate UID or GID entries, that the shell is pointing to an existing shell on your system,
and that the home directories are in the /Users directory, as if you have brought this file over from
another system; generally, home directories would be in the /home directory.

To see a complete list of the kinds of data that can be imported or exported with the niload and nidump
utilities, issue the nidump command on its own as follows:

$ nidump
usage: nidump [-r] [-T timeout] {directory | format} [-t] domain
known formats:

aliases
bootptab
bootparams
ethers
exports
fstab

384

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 384

group
hosts
networks
passwd
printcap
protocols
resolv.conf
rpc
services

The known formats refer to the flat files typically found in the /etc directory on Unix systems, such as
/etc/passwd, /etc/group, /etc/hosts, and so forth. These files are of a standard format, which
Apple refers to as a known format. This functionality makes it extremely easy to import users and other
common resources from another Unix system into a NetInfo database, and to export such information to
other systems. An example of the usefulness of this is such that, on many large networks there will be a
common hosts file that is distributed to all systems to aid in host name resolution. In order to get that
information into a Mac OS X NetInfo database, the file can be loaded using niload, and the known host-
file format can be referred to as hosts.

Backup and Restoration of the NetInfo Database
As you can gather, there is a wealth of critical information stored in the NetInfo database. For the system
to function properly, it is imperative that this database is functional. For this reason, the database is
backed up daily by the cron job /etc/daily. The file /var/backups/local.nidump is the backup
that is created by the cron job /etc/daily.

For more information on NetInfo, check the man pages for niutil, nidump, and niload and download the
document “Understanding and Using NetInfo” from:
http://docs.info.apple.com/article.html?artnum=106416.

For more information on Open Directory, check the following page: http://developer.apple.com/
documentation/Networking/Conceptual/Open_Directory/Chapter1/chapter_2_section_1.
html.

System Startup
Chapter 2 discussed the boot process of a Unix system, the scripts that run when the system starts up,
and how services are launched. Mac OS X follows a similar bootstrap process to that of a standard Unix
system; however, it keeps things organized a bit differently. In fact, the startup process in Mac OS X is
probably the greatest difference between it and other Unix systems.

When the machine is powered on, the computer is under the command of the firmware, which is like the
BIOS on a standard PC. The firmware, after completing its job, hands control of the system to the BootX
loader, which is responsible for bootstrapping the Mach microkernel, mach_kernel. Next, the device
driver subsystem, I/O Kit, is initialized, and then the root file system is mounted. Following these
actions, mach_init is loaded; mach_init is responsible for housekeeping within the mach microkernel.
Finally, the BSD init process is fired up and given PID 1, as is standard in Unix systems.

385

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 385

The system at this point is fully booted, with all defined startup services launched, and is ready to accept
interactive logins.

By default the system boots in a graphical mode, where very little information is displayed on the
screen. If you want to watch the boot process in detail, for either troubleshooting or for informational
purposes, boot the system into verbose mode by holding CMD + V while powering up the system.

While other Unix systems use the files in the /etc/rc.d or /etc/init.d directories as startup scripts,
and will use the file /etc/inittab to direct the init process in loading processes at boot time, the Mac
OS X startup process is completely different than that of other Unix systems, as described previously.
Startup items are processed from the /System/Library/StartupItems/ and /Library/Startup
Items directories.

Services that are installed by Apple as part of the Mac OS X installation are installed in the /System/
Library/StartupItems directory. Like all the things in the System directory, these files are not meant to
be changed, because those changes can be discarded the next time the Software Update application is run
if Apple has overwritten these files. There is a Startup Items folder in the Library folder, where locally
installed services can be configured to start on system boot. The /Library/StartupItems/ folder can
be used for any local services.

For more information on the I/O Kit, visit http://developer.apple.com/hardware/iokit/.

For more information on the Mac OS X boot process, visit http://developer.apple.com/
documentation/MacOSX/Conceptual/BPSystemStartup/Concepts/BootProcess.html.

File Structure Differences
Historically the Macintosh has used what is referred to as a forked file structure to store files on the sys-
tem. All files created on a Macintosh using the classic version of the operating system had two forks: a
data fork and a resource fork. There was no requirement to use both forks, and many programs would
save all their data into the data fork. The resource fork was used for data such as icons, fonts, and similar
additional information.

Windows and Unix files consist of only one fork, the data fork. Mac OS X has mostly done away with
resource forks, although it retains compatibility with the older file format. Applications in Mac OS X
store their resources differently, and documents no longer require resource forks.

One of the challenges of working with Mac OS X files from the terminal by using the traditional Unix
utilities mv and cp is that the resource forks can be unlinked from the file when using these tools to copy
or move the file. Apple provides the tool ditto (/usr/bin/ditto) that can be used to copy files from the
command line while preserving the resource fork. Additionally, if the developer tools are installed, the
tools MvMac and CpMac are installed in the /Developer/Tools directory.

For a further explication of resource forks on the Macintosh, consult this page online at Wikipedia:
http://en.wikipedia.org/wiki/Resource_fork.

386

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 386

Root User Account
The account root is disabled by default in Mac OS X. It is preferable to use the sudo utility described
in Chapter 12 to perform administrative tasks. If you find yourself in a situation where a root shell is
required, it can be obtained by executing the command sudo /bin/bash, or sudo /bin/tsch depend-
ing on your preference. If you wish to enable the root account for interactive use, you can do so by set-
ting a password for the account by issuing the command sudo passwd root, then going to the NetInfo
Manager and enabling the root account by selecting Enable Root User from the Security menu, as shown
in Figure 20-5.

Figure 20-5

387

Conversion: Unix for Mac OS Users

23_579940 ch20.qxd 3/21/05 6:14 PM Page 387

You can then log in to the root account by three different methods:

❑ Use the traditional su -.

❑ Enter the command sudo su -.

❑ Change the setting for “Display Login Window as:” to “Name and Password” in the Login
Options section of the Accounts Panel of System Preferences. Then log out and enter root for the
username with the password you set for root.

The first two options allow you to issue commands as root in a Terminal window, while the third option
provides you with a fully interactive root login, complete with a desktop and a dock. Remember that
when using the first command, you will have to enter the system root password; while using the com-
mand in the second example, you would enter the password for your own account.

Summary
This chapter discussed issues that are specific to Apple operating systems, including Mac OS X, the cur-
rent Macintosh operating system, which is Unix-based. The chapter covered the history of Mac OS X,
discussed the differences between Mac OS 9 and Mac OS X, and discussed the differences between
Mac OS X and other Unix systems.

Exercises
1. You want to export your Mac OS X users to a passwd file for use on another Unix system. How

do you do this?

2. You want to install an application that is available only to a single user on your system. Where
do you install the application so that it not accessible by other users?

388

Chapter 20

23_579940 ch20.qxd 3/21/05 6:14 PM Page 388

21
Conversion: Unix for

Windows Users

Microsoft Windows is generally the first operating system most people encounter due to its large
share of the desktop/personal computer market. Most users who learn Unix do so after they have
gained an understanding of the MS-DOS/Windows environment. This chapter shows you the simi-
larities between Unix and Windows/DOS, making the transition easier for you if you are converting
to Unix from a version of DOS or Windows XP (most of these commands will work in Windows 2000
and some will work in Windows 98).

Structural Comparison
There are some fundamental differences in methodology between Windows and Unix, specifically
in their file systems. In Unix, the / (slash) represents a separator and is used with commands to
indicate a new directory level; in Windows, the \ (backslash) is used for the same purpose. For
example, to cd (change directories) to the /var/log directory in Unix, you would type:

cd /var/log

In MS-DOS/Windows, you could navigate to the c:\windows\system directory by typing:

cd c:\windows\system

In Unix, the two directories in the preceding command are var and log (the log directory being
subordinate to the var directory in this example) as noted by the / separator. The leading / (called
root) is the top-level directory and is where all other directories start in Unix. The Windows direc-
tories are windows and system (system being subordinate to the windows directory in this exam-
ple). The c:\ indicates the starting point of this particular file system.

Windows has a different type of top-level directory (analogous to the root directory in Unix) usu-
ally called the c:\ directory, which tends to be the top-level directory for the file system. Other
devices such as second hard drives, network drives, floppy diskette drives, CD-ROM drives, and

24_579940 ch21.qxd 3/21/05 6:15 PM Page 389

USB key drives are often put in their own top-level directory equivalent to c:\. For instance, the typical
Windows system uses a:\ to represent the first floppy diskette drive and d:\ for the CD-ROM drive,
and all of these directories are equivalent to the c:\ in that they are at the same level in the file system.

In Unix, the / is the uppermost directory, and there are no equivalents. Secondary devices such as
CD-ROM, USB, and floppy diskette drives are subordinate to the / (root) directory and usually can
be navigated through the /mnt directory. So a floppy drive in Unix might be under /mnt/floppy, a
CD-ROM drive under /mnt/cdrom, and so on (the mountpoint, described in Chapter 4, differs among
the various Unix implementations). A second hard drive also would be subordinate to the / (root) direc-
tory and would typically be attached (mounted) to the system usually in the /mnt directory.

MS-DOS/Windows is not case-sensitive when it comes to its file systems; the filename TESTFILE.txt is
the same as TestFile.TXT and testfile.txt to the system. You could type any one of these varia-
tions or others and it would still refer to the same file. This is not true in Unix, which is case-sensitive.
The file TESTFILE.txt would be a completely different file than TestFile.TXT, and testfile.txt
would be another completely different file in the system. This applies to directories as well, so you must
be cognizant of capitalization when referring to files and directories.

The Administrator account in Windows is almost equivalent to the root account in Unix. In Unix, the
root (also referred to as the superuser) account can do anything on the system, whereas the Windows
Administrator account may be prevented from performing some tasks that would damage the system.

The Windows operating system often tries to protect users and administrators from themselves by pre-
venting them from making mistakes such as trying to remove a critical system file or deleting a file in
use on the system. For instance, if the Administrator tries to delete c:\windows\explorer.exe, he
receives an error such as the one shown in Figure 21-1.

Figure 21-1

In Unix, you can set up the rm command to provide a similar functionality (by setting an alias for rm to
rm -i in the user’s shell, as discussed in Chapter 5), but by default the system carries out the deletion or
performs the function requested with no prompting.

Windows’ Recycle Bin, which is used to “undelete” files, does not have an equivalent in most Unix sys-
tems, although similar functionality is implemented within many of the Graphical User Interfaces for
Unix. Linux KDE, Solaris GNOME, CDE windows managers, and Mac OS X Aqua, for example, do
include a Recycle Bin equivalent component, but most command-line Unix shells do not provide a way
to “undelete” files.

390

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 390

In Unix, if you try to delete /bin/sh as the root user, the system deletes it without hesitation. Unix
assumes that if you are logged in as the root user and you know what you are doing, even if you completely
wipe out the system, while Microsoft Windows attempts to protect the system as shown in Figure 21-2.

Figure 21-2

Windows provides an MS-DOS interface to the system. To access it, press Win + R keys to display the
run dialog in which you type cmd. The following table shows how to convert from a Windows/DOS
command line, how to perform the action in the Windows GUI, what the equivalent Unix command is,
a short description of the command, and the chapter in which the command is discussed.

Windows/Dos Windows GUI Unix Description Chapter

Command Sequence Command

at Use Task Scheduler at or cron Run a command at Chapter 11
(found in the Control a certain time
Panel)

attrib Alt + Enter chmod Modify file or Chapter 4
directory attributes

cd Use Windows Explorer cd Change directories Chapter 4
to navigate directories
in left column

chdir or cd Look in left section pwd Show current Chapter 4
of Explorer bar or at working directory
title bar of window

chkdsk chkdsk (c:\windows\ fsck Scan hard drives Chapter 4
system32\cchkdsk) for errors in files
or press Win + R and and damage, and
type chkdsk in the performs other
Run dialog’s textbox administrative tasks

cls Win + D clear Clear the screen —

copy Ctrl + C while file cp Copy a file Chapter 6
is selected and
CTRL + V to put
file in new location

Table continued on following page

391

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 391

Windows/Dos Windows GUI Unix Description Chapter

Command Sequence Command

date and/or Double-left-click the date Show the date Chapter 11
time time at the bottom

right hand corner of
the screen

del or erase Delete rm Delete or remove Chapter 6
a file

rmdir /S Delete rm -R Delete the files and Chapter 6
directories recursively

dir Use Windows Explorer ls Show the contents Chapter 4
to show contents of a directory

echo N/A echo Display output Chapter 4
following echo
command

edit or edlin Win + R then type vi (many Perform text editing Chapter 7
notepad in the others exist, on a file
dialog’s textbox vi is the one

that is most
likely to be on
the system)

exit Alt + F4 exit Terminate the shell Chapter 2

fc or comp N/A diff Look for differences —
between two files

diskpart Win + R then type fdisk Partition hard drives Chapter 4
or fdisk diskmgmt.msc

find Win + F grep (the Search files for Chapter 8
Unix words given as an
command argument
find looks
only at
filenames,
not inside
the files)

help or F1 man Show online help files Chapter 2
command ?

ipconfig Network Connections ifconfig Display and modify Chapter 16
(found in Control Panel) network interface

mem Ctrl + Shift + Esc vmstat Display memory Chapter 14
then select the (Solaris), statistics
processes tab top, free

(Linux)

392

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 392

Windows/Dos Windows GUI Unix Description Chapter

Command Sequence Command

mkdir Right-click, mkdir Create a directory Chapter 4
New, Folder

more N/A more Show output one Chapter 6
page at a time
(instead of scrolling)

move Ctrl + X while file mv Move a file Chapter 4
is selected and
Ctrl + V to put file
in new location

net session Win + R, then type who Display information Chapter 3
fsmgmt.msc about users currently

logged into the system

netstat Ctrl + Shift + Esc, netstat Display network Chapter 16
then select the statistics
Networking tab

nslookup No equivalent in GUI nslookup Perform a hostname Chapter 16
lookup

path Win + Break, select echo $PATH Show the directory Chapter 4
the Advanced tab, and order for
Select Environment executable files
Variables button
adjust PATH variable

ping No equivalent in GUI ping Transmit network Chapter 16
packets to defined
host

print Ctrl + P lpr Print named file —

prompt N/A Varies Modify the prompt Chapter 5
depending at the command line
on shell
in use

rename Select file then press F2 mv Rename a file Chapter 4

rmdir Delete rmdir Remove a directory Chapter 4

set Win + Break, select set Show environmental Chapter 5
the Advanced tab, variables
select Environment
Variables, and view
System Variables

Table continued on following page

393

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 393

Windows/Dos Windows GUI Unix Description Chapter

Command Sequence Command

sort Select description sort Arrange data either Chapter 8
bar in Windows alphabetically or
Explorer to sort by numerically
that description

tracert No equivalent in GUI traceroute Display network Chapter 16
routes to defined host

tree Explorer will show tree or Recursively list Chapter 4
this by selecting ls -R directory contents
the icon

type Open the item with cat Show the contents of Chapter 6
the corresponding a file or directory
program

ver Win + Break uname -a Show information Chapter 2
about the current
operating system
version

xcopy Ctrl + C while cp -R Recursively copy all Chapter 6
directory is the files in named
selected and directory
Ctrl + V to copy
directory in new
location

Major Administrative Tools Comparisons
The Unix and Windows operating systems can perform similar functions or have files that perform simi-
lar functions. This table identifies the Windows administrative tools and their equivalent in most Unix
systems.

Windows File or Command Unix File Description

autoexec.bat and config.sys /etc/init.d or / Related to system boot
etc/rc.number

C:\Documents and
Settings\username /home/username or User space on the system

/export/home/ username for personal files

C:\Program Files /opt (by tradition but Default location for storing
different depending on Unix) file installations

394

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 394

Windows File or Command Unix File Description

C:\windows\explorer.exe or /bin/sh, /bin/ksh, The shell for the system
C:\windows\system32\cmd.exe /bin/csh, etc.

C:\Windows\system32 and /etc, /bin, /sbin etc. Holds all files critical to
C:\Windows\system system operation

C:\Windows\System32\Config /etc Configuration files for the
system

C:\Windows\System32\Spool /var/spool Printing information

C:\Windows\Temp /tmp Storage area for temporary
files

Event View (Control Panel - /var/adm/messages To view system generated
Administrative Tools) (may differ on different messages

Unix systems)

Network Connections /etc/hostname. Used to setup the network
(Control Panel) interface_name, connections

/etc/hosts, /etc/
resolv.conf,
/etc/nsswitch.conf,
/etc/nodename,

Performance Monitor top, netstat (commands) Monitoring the perfor-
(Control Panel, mance of the system
Administrative Tools)

Scheduled Tasks (Control Panel) /var/cron/crontab and Setting up programs to run
/var/cron/at (may differ at a specified time
on different Unix systems)

Services (Control Panel, /etc/inetd.conf and Setting up available
Administrative Tools) /etc/services services on the system.

User Accounts (Control Panel) /etc/passwd and Setup for user accounts
/etc/shadow

Popular Programs Comparison
Many programs frequently enjoyed by Windows users have counterparts in Unix, and often these Unix
programs are free. The following are some of the more popular programs in Microsoft Windows and
their Unix equivalents.

395

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 395

Windows Program Unix Program Included with Unix?

Internet Explorer Mozilla Firefox (http://mozilla.org), Sometimes
Netscape Navigator (http://netscape.com),
Safari (included with Mac OS X),
Konqueror (http://konqueror.org)

Microsoft FrontPage Quanta Plus (http://quanta.sourceforge. No
net), NVU (http://nvu.com),
Netscape Composer (with Netscape Navigator;
http://netscape.com) and OpenOffice.org
(http://openoffice.org) includes a Web
editor as well

Microsoft IIS Apache (http://apache.org) Sometimes

Microsoft Money GnuCash (http://gnucash.org), No
or Quicken MoneyDance (http://moneydance.com)

Microsoft Office OpenOffice (http://openoffice.org), Yes
KOffice (http://koffice.org), GNOME
Office (http://gnome.org/gnome-office)

Microsoft Outlook Ximian Evolution (now under Novell, No
http://novell.com/products/
desktop/features/evolution.html)

Notepad or WordPad Vi Yes

PGP GnuPG (http://directory.fsf.org/ Sometimes
gnuPG.html)

Photoshop GNU Image Manipulation Program (GIMP) Not always
(http://gimp.org)

telnet telnet Yes

Winamp XMMS (http://xmms.org) No

Winzip or PKZIP tar and gzip Yes

WS FTP GFTP (http://gftp.seul.org) Sometimes

This is by no means a comprehensive list of the software available for Unix; most Microsoft Windows
programs have a Unix counterpart. The following sites are large archives of Unix software that can assist
you in finding the software you need:

❑ Sourceforge —www.sourceforge.net

❑ Freshmeat —http://freshmeat.net (heavily slanted toward Linux, but software for other
Unix systems is available)

❑ Free Software Foundation —www.fsf.org

396

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 396

❑ SunFreeware (Sun-specific) —www.sunfreeware.com

❑ Apple (Mac OS X–specific) —www.apple.com/support/downloads

There are other locations to find software for your version of Unix, and you can use your favorite search
engine to discover them.

Using Unix within Windows
You may find that you want to dabble in Unix, but you still need to maintain your Microsoft Windows
environment, or you may want to see what Unix is about before totally giving up your Microsoft
Windows system. There are multiple ways to do this through free software and commercial software.
The following list below offers a few of the many examples:

❑ VMWare (www.vmware.com) — This program allows you to run multiple operating systems
inside of the host operating system (which could be Windows). It emulates another system
within the program to allow you to install a new operating system, which is completely segre-
gated from the native (host) operating system. This program costs a significant amount of money.

❑ Microsoft Virtual PC (www.microsoft.com/windows/virtualpc/default.mspx) — This
program allows you to run multiple operating systems inside of the host operating system
(which could be Windows). It emulates another system within the program to allow you to
install a new operating system, which is completely segregated from the native (host) operating
system. This program costs a significant amount of money.

❑ Bochs (http://bochs.sourceforge.net) — This program allows you to run multiple operat-
ing systems inside of the host operating system (which could be Windows). It emulates another
system within the program to allow you to install a new operating system, which is completely
segregated from the native (host) operating system. This is open source and free software.

❑ Knoppix (www.knopper.net/knoppix/index-en.html) — This is a complete distribution of
Linux self contained within a CD-ROM. You can boot off the CD-ROM and a Linux operating sys-
tem will be fully available without overwriting or effecting the original installation of Windows or
other operating system. This allows you to preview Linux on the system while making no long-
term changes, as you can simply reboot your system without the CD-ROM to have your fully
functional Microsoft Windows system unaffected. This is open source and free software.

❑ Cygwin (www.cygwin.com) — This program allows you to run a large set of Unix (Linux) com-
mands within Windows without the need for a reboot. You can even run full Unix window
environments while still logged into a normal Microsoft Windows sessions. This is open source
and free software.

❑ U/Win (www.research.att.com/sw/tools/uwin) — This program allows you to run a large
set of Unix (Linux) commands within Windows without the need for a reboot. This is open
source and free software.

Cygwin is a program used by many Windows users to obtain some of the same functionality or the
capability to run programs created for Linux while still within the Windows environment. The following
“Try It Out” enables you use Cygwin to run the Unix commands you learn throughout this book with-
out leaving the comfort of your Windows environment.

397

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 397

Try It Out Use Cygwin
This exercise shows you how easy it is to use one of the programs that enable you to use Unix com-
mands within Windows.

1. Download the Cygwin setup program from http://cygwin.com/setup.exe.

2. Double-click the file to start the Internet install, at which point you should see a pop-up box
similar to that shown in Figure 21-3.

Figure 21-3

398

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 398

3. Click the Next button, and you will see a screen similar to Figure 21-4.

Figure 21-4

399

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 399

4. Select Install from Internet to download the files you need. You will now see a screen similar to
Figure 21-5.

Figure 21-5

400

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 400

5. You should select the defaults, but if you are comfortable with choosing others selections, you
may do so here. Click the Next button to move forward in the installation. That will bring you
to the dialog box shown in Figure 21-6, where you can choose the Local Package Directory for
storing installation files.

Figure 21-6

401

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 401

6. In the next dialog box (shown in Figure 21-7), you are prompted for the connection type you
want, which you can generally leave as the default.

Figure 21-7

402

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 402

7. Cygwin then displays a list of download sites for the selections you are choosing. You can select
the download site you prefer from the dialog box shown in Figure 21-8.

Figure 21-8

403

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 403

8. The download continues, as shown in Figure 12-9. A list of packages is created in the back-
ground and will display when it’s completed.

Figure 21-9

404

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 404

9. Figure 21-10 shows the package selection screen. For this exercise, you can choose all packages
to get the most functionality if you have high-speed Internet access; otherwise, you should
choose the specific packages you are interested in testing. Here is where you identify the pack-
age groups and individual packages (or programs) you want to install.

If you download “All Packages,” be prepared for a very large amount of downloaded material that may
take significant time to download even on a broadband connection.

Figure 21-10

405

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 405

10. After you have selected the packages you want, you see the download progress dialog box
shown in Figure 21-11.

Figure 21-11

406

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 406

11. After the packages have downloaded, a screen displays the installation progress (see Figure
21-12).

Figure 21-12

407

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 407

12. After installation is complete, you are asked if you want to select icons to create shortcuts to the
Cygwin program, as shown in Figure 21-13.

Figure 21-13

13. After installation, select the Cygwin icon on your desktop to start the program. A shell prompt
(similar to the one shown in Figure 21-14) displays. From it, you can run a large number of the
commands discussed in this book.

408

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 408

Figure 21-14

How It Works
Cygwin enables you to use Linux API emulation, providing Linux-like functionality through a Microsoft
Windows DLL. You can run graphical interfaces and many programs built for Linux within your current
Windows session.

More information about using Cygwin is available at http://cygwin.com/cygwin-ug-net/
cygwin-ug-net.html.

Using Windows within Unix
If you decide you want to embark on a Unix-only environment for your system, you do not necessarily
have to give up your critical Windows programs. There are tools in the Unix community that enable you to
run your favorite Microsoft Windows programs within Unix. Some of the more popular are the following:

❑ Wine (www.winehq.com) enables you to run native Microsoft Windows programs from within
Linux. This program is still somewhat difficult for new users to use and should be used with care.

❑ Crossover Office (www.codeweavers.com/site/products) enables you to run Microsoft
Office and other programs from within Linux.

❑ VMWare (www.vmware.com) is also available for non-Windows platforms, enabling you to run
Windows programs within an emulated environment.

409

Conversion: Unix for Windows Users

24_579940 ch21.qxd 3/21/05 6:15 PM Page 409

Summary
In this chapter, you learned how to map Microsoft Windows products to Unix, including as discussion of
which programs are similar, how file structures differ, and what program similarities exist. You also
learned how to use Unix from within a Windows environment as well as which programs all you to use
Windows within a Unix environment. With this information, you can transfer your current knowledge
to a Unix system.

410

Chapter 21

24_579940 ch21.qxd 3/21/05 6:15 PM Page 410

A
Answers

Chapter 3

Exercise 1 Solution

1. /etc/passwd. Holds information concerning the account name, user ID, group ID, home
directory, and shell.

2. /etc/shadow. Holds the encrypted password for the corresponding account name in
/etc/passwd as well as password and account-aging information.

3. /etc/group. Identifies the different groups available for accounts.

Exercise 2 Solution
adduser -c “C Jane Doe” -d /export/home/jdoe -e 2005/05/31-f 10 -g employees
-G info_tech_1, info_tech_2, info_tech_5 -m -s /bin/ksh -u 1000 jdoe
passwd jdoe
Changing password for user jdoe.
New UNIX password:
Retype UNIX password:
passwd: all authentication tokens updated successfully.
#

Chapter 4

Exercise Solution
chmod 755 samplefile

Chapter 5

Exercise 1 Solution
PS1=”[\d \u]$”

25_579940 appa.qxd 3/21/05 6:13 PM Page 411

Exercise 2 Solution

Find the executable file for this program. Add its directory to the value of the PATH variable, as in
PATH=$PATH:/newdirectory.

Exercise 3 Solution

Add the command to the appropriate run control file for your preferred shell.

Chapter 6

Exercise Solution
ls /home/k* | wc > k-users-files

Chapter 7

Exercise 1 Solution

If you press the Esc key twice, you know you are in command mode.

Exercise 2 Solution

In command mode, type either / computer or ? computer to search for the word computer moving for-
ward or backward respectively. (Be sure to put a space before and after the “computer” string if you
want to find only instances of the complete word.) To continue the search in the opposite direction, type
an uppercase N.

Exercise 3 Solution

In command mode, type 5yy at the first line of the five-line sequence to be copied, and then type 10j to
move 10 lines down. Type a lowercase p to paste the yanked lines on the line below the current line.

Exercise 4 Solution
:1,$s/person/human/g

Chapter 8

Exercise 1 Solution

Either of the following commands is acceptable:

cat /etc/inetd.conf | grep telnet.d
grep telnet.d /etc/inetd.conf

Exercise 2 Solution
find /tmp -size +5000000k -atime 4

412

Appendix A

25_579940 appa.qxd 3/21/05 6:13 PM Page 412

Chapter 9

Exercise 1 Solution
awk -f: ‘{print $4 “ “ $1 “ “ $2 “ “ $3}’ | sort > addresses-sorted.txt

Exercise 2 Solution
s/St\./Street/g
s/Ave\./Avenue/g
s/Rd\./Road/g
s/Dr\./Drive/g
s/N\./North/g
s/S\./South/g
s/E\./East/g
s/W\./West/g

Exercise 3 Solution
sed ‘s/\(NY\), \(New York\)/\2, \1/’ addresses.txt > addresses-new.txt

Chapter 11

Exercise Solution
crontab -e

* * /2 * * userid ls | mail -s “Directory Listing for Home Directory” userid

Chapter 12

Exercise Solution

Edit the sudoers file with visudo and add the following entries:

Host alias specification
Host_Alias Backup_Host=linux_backup

User alias specification
User_Alias Administrator=jdoe

Cmnd alias specification
Cmnd_Alias Backup_Script=/bin/su backupuser

User privilege specification
Administrator Backup_Host=Backup_Script

413

Answers

25_579940 appa.qxd 3/21/05 6:13 PM Page 413

Chapter 13

Exercise 1 Solution
###
filescript.sh
#
Dec. 9, 2004
#
A program to find certain types of files, and report certain types
of information, selectable by the user.
#
CHANGELOG:
#
12/9/04 -- This is version 1. No changes at this point
#
##

#!/bin/sh

Get directory from command line. Otherwise, directory is current.

if [$1] # NOTE: This form of the ‘test’ command returns
true, as long as the value specified actually
exists.

then
DIR=$1

else
DIR=`pwd`

fi

cd $DIR
echo “Working directory is $DIR”

Prompt for an option from the keyboard.

echo “What information would you like to know (size, permission, owner,
group, all)?”

read OPTION

If the option is “size”, find all “.txt” files in directory and print
their names and file sizes.
#
If the option is “permission”, print the permissions held by the file
#
If the option is “owner”, print the owner of the file
#
If the option is “group” print the group
#
If the option is “all”, print all of the above info

414

Appendix A

25_579940 appa.qxd 3/21/05 6:13 PM Page 414

if [$OPTION = “size”]
then

ls -la *.txt | awk ‘{print $9”: “$5}’

elif [$OPTION = “permission”]
then

ls -la *.txt | awk ‘{print $9”: “$1}’
elif [$OPTION = “owner”]
then

ls -la *.txt | awk ‘{print $9”: “$3}’
elif [$OPTION = “group”]
then

ls -la *.txt | awk ‘{print $9”: “$4}’
elif [$OPTION = “all”]
then

ls -la *.txt | awk ‘{print $9”: “$1”, “$3”, “$4”, “$5}’
else

echo “Must be size, permission, owner, group, or all.”

fi

Exercise 2 Solution

The chain of elif statements in Exercise 1’s solution works but seems a little cumbersome. It could be
rewritten more elegantly with case statements, as this script shows.

###
case $OPTION in
“size”)
ls -la *.txt | awk ‘{print $9”: “$5}’
;;
“permission”)
ls -la *.txt | awk ‘{print $9”: “$1}’
;;
“owner”)
ls -la *.txt | awk ‘{print $9”: “$3}’
;;
“group”)
ls -la *.txt | awk ‘{print $9”: “$4}’
;;
“all”)
ls -la *.txt | awk ‘{print $9”: “$1”, “$3”, “$4”, “$5}’
;;
*)
echo “Must be size, permission, owner, group, or all.”
;;
esac
#
###

415

Answers

25_579940 appa.qxd 3/21/05 6:13 PM Page 415

Chapter 14

Exercise 1 Solution

The following function sums two values passed to it. For bonus points, write some validation to ensure
that the right number of parameters is passed and that they are of the right type. To make it available to
all scripts, place it in .bashrc:

#!/bin/bash

total() {
sum=`expr $1 + $2`

}

exit 0

Exercise 2 Solution

Use the tail command with an IO redirection operator like so:

#!/bin/bash

tail /var/log/some_file filename

exit 0

Substitute some_file for whatever log file you want to monitor in the /var/log directory.

Exercise 3 Solution
#!/bin/bash

badsum() {
result = `expr $1 / $2`
}

function cleanup() {
echo “You have attempted to divide by 0. You are either very brave, or very
silly... “

exit 1

}
trap cleanup 8

badsum 3 0

exit 0

416

Appendix A

25_579940 appa.qxd 3/21/05 6:13 PM Page 416

Exercise 4 Solution

Create and run as root user:

#!/bin/bash

echo “The date is: $(date +%c)”
echo
echo “The following users are logged on: $(who | more)”
echo
echo “The following files are being used: $(lsof | more)”

wall <<End
Good day! The Administrator is now in. If you have any queries please give me a
shout!
End

exit 0

Chapter 15

Exercise 1 Solution

Add the following line to syslog.conf:

kern.alert /dev/console

Exercise 2 Solution
mail.debug @horatio

Exercise 3 Solution
watchfor /INVALID/
echo
bell
mail addresses=root@localhost, subject=”Login attempted with incorrect username”

Chapter 16

Exercise Solution

First, create an awk script called top_process.awk and enter the following:

/^ *[0-9]/ {
top_cpu_usage = 0
top_command = 0
top_user = 0

for (line = 0; line <= NR; ++line) {
if (top_cpu_usage > $3) {

top_cpu_usage = $3

417

Answers

25_579940 appa.qxd 3/21/05 6:13 PM Page 417

top_command = $11
top_user = $1

}
}

printf “Current Top Process: “ top_command “, by user: “ top_user “, at:
“top_cpu_usage “\n”
}

Next, create a shell script called top_process.sh and enter the following:

#! /bin/bash
run traceroute and parse the data with top_process.awk
ps auwx > process_results.data
awk -f top_process.awk process_results.data

Finally, within a local crontab file, enter the following automation for the shell script:

run our shell script for testing the network
* */2 * * * userid cd ~/bin; ./top_process.sh | mail –s “System Performance Data”
userid

Chapter 17

Exercise 1 Solution
#!/usr/bin/perl

use warnings;

open (FILE, ‘/etc/passwd’);
@lines = <FILE>;

close (FILE);

foreach $line (@lines) {
(@fields) = split /:/, $line;
print “Username: “.$fields[0];
print “ Userid: “.$fields[2];
print “\n\n”;

}

exit (0);

Exercise 2 Solution

The debugger ends at different lines of code, as each invocation provides a different branch of code to
take.

418

Appendix A

25_579940 appa.qxd 3/21/05 6:13 PM Page 418

Exercise 3 Solution

The else test in the subroutine test should be changed from this:

} else {
There was a error in the input; generate an error message
warn “Unknown input”;

}

to this:

} else {
return (‘no numeric’);

}

Chapter 18

Exercise Solution
tar -cvzf /tmp/etc_backup /etc

or

tar -cvf /tmp/etc_backup /etc
gzip /tmp/etc_backup

Chapter 19

Exercise 1 Solution

1. a. http://catb.org/~esr/fetchmail/fetchmail-6.2.5.tar.gz

b. tar xvfz fetchmail-6.2.5.tar.gz

c. cd fetchmail-6.2.5

more INSTALL

d. ./configure

e. make

f. su root -c “make install” (provide superuser password at the prompt)

g. man fetchmail (and follow the instructions shown in the manual pages)

Exercise 2 Solution

2. a. www.acme.com/software/micro_httpd/micro_httpd_14dec2001.tar.gz

b. tar xvfz micro_httpd_14dec2001.tar.gz

c. cd micro_httpd

more README

419

Answers

25_579940 appa.qxd 3/21/05 6:13 PM Page 419

d. make

e. cp micro-httpd desired-location

f. man inet.d or man xinet.d (and follow the directions relevant to your particular
installation)

Chapter 20

Exercise 1 Solution
nidump passwd . passwd >> /tmp/passwd

Exercise 2 Solution

You should install the application in /Users/username/Applications and replace username with the
short username for the user to whom you want to provide the application.

420

Appendix A

25_579940 appa.qxd 3/21/05 6:13 PM Page 420

B
Useful Unix Web Sites

Unix Basics
❑ Bell Labs Unix Overview —www.bell-labs.com/history/unix/tutorial.html

❑ Darwin —http://developer.apple.com/darwin/projects/darwin/

❑ GNU —http://gnu.org

❑ Linux Documentation Project —http://en.tldp.org/

❑ Linux.com —http://linux.com

❑ Linux.org —www.linux.org

❑ Mac OS FAQ —http://osxfaq.com/Tutorials/LearningCenter/

❑ Mac OS X Hints —www.macosxhints.com/

❑ Mac OS X Basics —http://apple.com/pro/training/macosx_basics/

❑ SAGE —http://sageweb.sage.org/

❑ Unix Guru Universe —http://ugu.com

❑ Unix Rosetta Stone —http://bhami.com/rosetta.html

Unix History
❑ Dennis Ritchie’s Homepage —www.cs.bell-labs.com/who/dmr/

❑ Ken Thompson Homepage —www.bell-labs.com/about/history/unix/
thompsonbio.html

❑ The Unix Heritage Society —www.tuhs.org/

❑ Unix Timeline —http://levenez.com/unix/

26_579940 appb.qxd 3/21/05 6:13 PM Page 421

Unix Security
❑ General Unix Security —http://secinf.net/unix_security/

❑ Linux Security —http://linuxsecurity.com

❑ SANS.org Top 20 Vulnerabilities — http://sans.org/top20/#u1

❑ Security Focus —http://securityfocus.com/unix

❑ Unix Network and Security Tools —http://csrc.nist.gov/tools/tools.htm

❑ Unix Security Checklist —www.cert.org/tech_tips/usc20_full.html

Vendor Sites
❑ Debian GNU/Linux —http://debian.org/

❑ FreeBSD —http://freebsd.org/

❑ Hewlett Packard HP-UX —http://hp.com/products1/unix/operating/

❑ IBM AIX —www.ibm.com/servers/aix/

❑ KNOPPIX —http://knopper.net/knoppix/index-en.html

❑ Mac OS X —http://apple.com/macosx/

❑ NetBSD —http://netbsd.org/

❑ OpenBSD —http://openbsd.org/

❑ OS/390 Unix —www.ibm.com/servers/s390/os390/bkserv/r8pdf/uss.html

❑ Plan 9 —www.cs.bell-labs.com/plan9dist/

❑ Red Hat Enterprise Linux —http://redhat.com

❑ Red Hat Fedora Core —http://fedora.redhat.com/

❑ SGI IRIX —http://sgi.com/products/software/irix/

❑ Sun Microsystem’s Solaris Unix —http://sun.com/software/solaris/

❑ SUSE Linux —www.novell.com/linux/suse/index.html

❑ Yellow Dog Linux (for Apple systems) —http://yellowdoglinux.com/

Software Resources
❑ Apple (Mac OS X–specific) —http://apple.com/support/downloads/

❑ MacUpdate(Mac OS X–specific) —www.macupdate.com/

❑ Fink Project (Mac OS X–specific) —http://fink.sourceforge.net/

422

Appendix B

26_579940 appb.qxd 3/21/05 6:13 PM Page 422

❑ Free Software Foundation —www.fsf.org

❑ Freshmeat (heavily slanted toward Linux, but software for other Unix systems available) —
www.freshmeat.net

❑ RPM Find (Linux-specific) —http://rpmfind.net/

❑ Sourceforge —http://sourceforge.net

❑ SunFreeware (Sun-specific) —http://sunfreeware.com

Unix Magazines
❑ Linux Journal —http://linuxjournal.com

❑ Linux Magazine —http://linux-mag.com/

❑ MacAddict —http://macaddict.com/

❑ Mac Tech —http://mactech.com/

❑ MacWorld —http://macworld.com/

❑ Sys Admin —http://sysadminmag.com/

Unix News and General Information
❑ BSD News —http://bsdnews.com/

❑ Linux Format —http://linuxformat.co.uk/

❑ Linux Gazette —http://linuxgazette.com/

❑ Linux Insider —http://linuxinsider.com/

❑ Linux Today —http://linuxtoday.com/

❑ Linux Weekly News —http://lwn.net/

❑ Linux.org —www.linux.org

❑ Mac Minute —http://macminute.com/

❑ Mac News Network —http://macnn.com/

❑ NewsForge —http://newsforge.com/

❑ Slashdot.org —http://slashdot.org

❑ Solaris Central —http://solariscentral.org/

❑ Sun News —http://sun.com/software/solaris/news/

❑ Unix Review —http://unixreview.com/

❑ Unix World —http://networkcomputing.com/unixworld/unixhome.html

423

Useful Unix Web Sites

26_579940 appb.qxd 3/21/05 6:13 PM Page 423

Fun Stuff
❑ KDE versus GNOME —http://freshmeat.net/articles/view/179/

❑ Unix Haters Handbook —http://research.microsoft.com/~daniel/unix-haters.html

❑ Vi Home Page —http://thomer.com/vi/vi.html

❑ Vi versus Emacs —http://newsforge.com/article.pl?sid=01/12/04/0326236

424

Appendix B

26_579940 appb.qxd 3/21/05 6:13 PM Page 424

In
de

x

Index

SYMBOLS
+ (addition operator), 236
[a-z] (alphabet inside brackets), 153
<> (angle brackets), 113, 310
* (asterisk), 111, 151
@ (at sign), 360
\ (backslash), 146, 153
\> (backslash, greater than sign), 146
\< (backslash, less than sign), 146
{} (braces), 173
^ [] (caret before bracketed sequence), 152
:! (colon, exclamation point), 143
{} (curly bracket notation), 258–259
/ (division operator), 236
$ (dollar sign), 152–153, 306
.. (double dot), 86
“ (double quotes), 310
= (equal sign), 360
/ (forward slash), 54, 55-56
> (greater than sign), 244–245
(hashmark character), 227–228, 306
- (hyphen), 69
< (less than sign), 244–245
* (multiplication operator), 236
[0-9] (numbers inside brackets), 154
. (period or dot), 62, 86, 150, 310
+= (plus, equal sign), 360
? (question mark), 111, 153
?= (question mark, equal sign), 360

#! (shebang), 182–183, 230
[] (square brackets), 111, 150
[^] (square brackets with caret between), 151
- (subtraction operator), 236
~ (tilde), 86, 127
| (vertical line character), 114, 245

A
absolute path, 56, 85–86
access control

commands, scheduling (crontab), 208
group accounts, 30
one-time scheduling execution (at command),

211
services, 223–224
user accounts, 30

accidental deletion, recovering from (restore
command), 338–340

accounts
commands, listed, 40–41
group, 30, 38
managing (useradd command), 41–43
removing unneeded, 221–222
root, 29
system, 30
user, 30

acknowledgment number, 284
action, 270

27_579940 bindex.qxd 3/21/05 6:15 PM Page 425

addition operator (+), 236
address

absolute and relative paths, 57
IP, 21
network, 286–287
quitting at encounter, 172

Address Resolution Protocol (ARP), 285
administrative access, limiting

password prompting (sudo command), 218–221
root user ID (UID 0), 217–218
switch user (su command), 218

administrative tools
Mac OS X, 378–379
shell scripting, 88–89, 263–266
user account information file (/etc/passwd),

31–34
Windows, 394–395

Administrator account, Microsoft Windows, 390
Adobe Photoshop, 396
Advshell, 93
aging passwords, 34–37
AIX kernel, 11
aliases

environment customizing, 101
permission to create, 219

alphabet inside brackets ([a-z]), 153
Amanda backup suite, 341
angle brackets (<>), 113, 310
answering TCP/IP request, 295–296
Apple. See also Mac OS 9; Mac OS X

archive, 397
Mac history, 371

Apple Developer Connection, 343
Apple key, 379
Applications folder, Mac OS X, 374–375
archives, downloadable programs, 346
ARCserver backup suite, 341
arguments

commands, 106
repeating (echo command), 59–60

Arkia backup suite, 341
ARP (Address Resolution Protocol), 285

arrays
associative, in Perl, 306
declaring, 258
dereferencing, 258–259
described, 257–258
traversing, in Perl (foreach loop), 312
values, removing, 259–260
variables, 90

arrow keys, 128
ash shell

described, 89
run control files, 94, 95

assets, assessing, 214
asterisk (*), 111, 151
at sign (@), 360
AT&T System V, 2
attacks. See security
attributes, process, 188–189
AT&T’s Bell Laboratories, 1
automation programming. See Perl programming
avail column, directory, 75
available shell, finding, 92
AWK program

data, transforming into formatted report,
173–174

described, 167
extracting data parts, 174–175
file, using, 176–178
network roundtrip, timing, 300–302
patterns, working with, 175–176

B
background programs, running, 196–197
backslash (\), 146, 153
backslash, greater than sign (\>), 146
backslash, less than sign (\<), 146
backups
bzip2 compression, 331–333
copy in/out command (cpio), 333–335
database, 385
deciding what to cover, 322

426

addition operator (+)

27_579940 bindex.qxd 3/21/05 6:15 PM Page 426

described, 321–322
distributed copies of files and backup (rdist),

340
entire file system (dump command), 335–338
full, differential, and incremental, 323–324
GNU zip compression (gzip), 329–331,

332–333
media types, 323
portable archive exchange (pax), 340
remote file synchronization (rsync), 340
scheduling, 324–325
storing, 325
suites, 341
tape archives, creating (tar command),

326–328, 332–333
validating or recovering from accidental deletion

(restore command), 338–340
verifying, 325

Bacula backup suite, 341
bash (Bourne Again SHell)

Bourne scripts, running, 89
described, 5, 89–90
kill command, 190
multiple lines, editing, 170
options, available, 101–102
PATH variable, appending, 85
prompt, customizing, 82–83
run control files, 94, 96–98
scripting, 240
variables, 99–100, 231

Be Inc., 371
beginning of file, viewing (head command), 72
BeOS, 371
Berkeley Software Distribution. See BSD
binary files

administrative (sbin directory), 56
directory (bin directory), 55
type, showing (file command), 60

Bochs program, 397
boot directory, 55
boot messages, viewing, 12
boot process, 9–13, 374

bootstrapping, 9–10
BootX loader, 385–386
Bourne, Steve (Bourne shell author), 88
Bourne Again SHell. See bash
Bourne shell (sh)

command prompt, 81–82
described, 5, 88–89
PATH variable, appending, 85
run control files, 94
scripting, 240

braces ({}), 173
BSD (Berkeley Software Distribution)

build-from-source package systems, 368
building and installing software (pmake com-

mand), 354
described, 2, 3
log files, 269
Nvt text editor, 147
open source licensing, 344–345
ps tool, 184
top command, 192

buffer, yanking and pasting text, 140
bug fixes, 346
build, software

sample, 355–357
source code, beginning, 352–354
troubleshooting, 367

bzip2 compression, 331–333

C
C shells (csh)

aliases, 101
described, 5, 91–92
options, available, 102
run control files, 94
scripting, 240

capacity column, directory, 75
capital letters, variable written in, 231
caret before bracketed sequence (^ []), 152
case statement, 237–239
case-sensitivity, file names and, 57

427

case-sensitivity, file names and

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 427

c: directory, Microsoft Windows, 389–390
CDs

backup media, 323
mounting, 77–79
running KNOPPIX distribution from, 6–8

change directory command (cd), 58–59
changing

default shell, 87–88
group names, 43
shell temporarily, 87

characters
changing, 137–139
deleting, 136–137
printing count of (wc command), 165–166
single, regular expressions matching, 155
wildcards matching, 111–112

checking. See monitoring
checksum, 284
child process, killing (SIGCHLD signal), 192
Class A Network, 286
Class B Network, 286
Class C Network, 286
colon, exclamation point (:!), 143
command line

logging in, 17–20
options, checking (getopts), 253–254
processes, stopping, 189
prompt, customizing (PS1 variable), 81–83
system shutdown, 25

command line interpreter. See shell
command mode, vi, 128
command output

sending files to backup (cpio), 333–335
splitting to multiple locations (tee command),

165
command substitution, 246
command-line interface

Mac OS X, 379–382
multi-shell, creating, 96
Unix history, 4

commands
accounts and groups, 40–41
default behavior, 106
described, 105

directory contents, listing (ls command),
115–116

help from man (manual) pages, 25–27
information, finding, 108–110
input and output redirection, 112–113
ls, 106–108
Macintosh equivalent commands, 380–382
metacharacters altering, 111–112
navigating file system, 57–58
pipes, 114
running from vi editor, 143
sed editor, most useful listed, 171–172
substitution, 114–115
superuser, delegating (sudo), 46–47
Windows (Microsoft), compared, 391–394

commands, file
content, breaking into single-screen chunks

(more and less commands), 117
content, outputting (cat command), 116–117
creating new or moving content (cp command),

118
deleting (rm command), 118
groups, 120
length, determining (wc command), 118–119
moving (mv command), 117
quotas, maintaining, 122–124
system, navigating (cd command), 116
timestamp, updating (touch command), 118
username versus UID, 119

commands, file permissions
default (umask command), 121
executable files, 122
list, reading, 121
types, 120

comments
crontab file, 205
described, 33
Perl scripting, 304–305
shell scripting, 227–229
writing, 41

comparison operators, 235–236
compilation

GNU tools, 363–364
precompiled software packages, 367–369

428

c: directory, Microsoft Windows

27_579940 bindex.qxd 3/21/05 6:15 PM Page 428

Comprehensive Perl Archive Network (CPAN)
modules, 279

compressed files
creating (gzip and bzip2), 329–333
extracting, 351

configure script, 352–354
configuring
syslogd utility, 271–274
system clock, 199

content, file
breaking into single-screen chunks (more and

less commands), 117
outputting (cat command), 116–117
tarfile, 326, 327

conversion. See Mac OS X; Windows
Copeland, 371
copy in/out command (cpio), 333–335
copying

backup files (cpio command), 333–335
files (cp command), 72
lines (yy command), 139–140, 141
logwatch Perl script, 277
word portion (yw command), 140

count
looping with, Perl code (while and

do...while), 311–312
of newlines, characters, or words, printing (wc

command), 165–166
words on specified line, 177

CPAN (Comprehensive Perl Archive Network)
modules, 279

Crack password discovery program, 216
creating

directories (mkdir command), 74
files, 72–74
files (cp command), 118
group accounts, 43
links, 64–67
tarfile, 326
user accounts, 41–43, 45

cron routine execution
access, controlling (crontab), 208
output, managing, 207–208
scheduling commands, 202–205

crontab file, documenting, 205
Crossover Office tool, 409
csh. See C shells
curly bracket notation ({}), 258–259
current location, file system (pwd command), 58
cursor, positioning, 129
customizing environment

aliases, 101
bash variables, 99–100
command prompt (PS1 variable), 81–83
libraries, dynamic shared, 102–103
options, 101–102
path, 83–86
tcsh variables, 99
variables, 246–247
viewing variables, 98–99
Z shell variables on Red Hat Linux, 100

Cygwin, 397–409

D
daemons, 11, 186
Darwin, 3
data

backups, importance of, 321–322
extracting, 174–175
full, differential, and incremental backups,

323–324
identifying, 214
loss and manipulation, 215
restoring, 325
transforming into formatted report, 173–174
transporting, 283–284
user entry, identifying, 228
variable manipulation functions (chomp, join,

and split), 307–308
database backup and restoration, 385
date

current, showing, 82
password aging, 36

daylight saving time, 199–200
debugging

Perl scripts, 318–320
shell scripts, 265–266

429

debugging

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 429

declaring arrays, 258
defaults

command behavior, 106
file permissions (umask command), 121

deleting
array values, 259–260
characters, 136–137
directories, 74
file system (umount), 79
files (rm command), 73–74, 118
groups, 43
programs, 222
recovering files (restore command), 338–340
text lines, 171
user accounts, 45, 221–222

dereferencing arrays, 258–259
Desktop folder, Mac OS X, 376
destination, TCP header, 284
detecting files with shell scripting, 255–256
devices

directory (dev), 56
as files, 54
identifying, 9
Microsoft Windows, 390
types, showing (file command), 60

DHCP (Dynamic Host Configuration Protocol),
291–292

differential backup, 323–324
digital signature, obtaining, 349–350
directory

backup, scheduling, 203
change command (cd), 58–59
contents, listing (ls command), 61–62,

115–116
deleting (rm command), 73
escape sequences, 82
executable files, list of (PATH environment

variable), 84–85
finding files (find command), 161–163
Mac OS X, 386
making and removing, 74
moving to (cd command), 58–59

Perl functions, 310
scripts, storing, 230
services, NetInfo and, 382–386
structure, 54–55
tarfiles, saving, 327
Windows, 389–390

disabling services, 223
disk space (du command), 76
disk-oriented file system, 53
displaying process lineage, 191–192
distributed copies of files and backup (rdist),

340
division operator (/), 236
DNS (Domain Name System)

TCP/IP, 289
testing (nslookup, dig, and host), 293–294

documenting
crontab file, 205
described, 33
Perl scripting, 304–305
shell scripting, 227–229
writing, 41

documents, scheduling backup of, 203–205
Documents folder, Mac OS X, 376
dollar sign ($), 152–153, 306
domain names, 288–289
DOS (Microsoft)

remote login via telnet, 23
Windows interface, 391–394

dot or period (.), 62, 86, 150, 310
double dot (..), 86
double quotes (“), 310
do...while loop, Perl programming, 312
downloading files

file size, checking, 347
mechanics, 347–348
tarball, 346–347

du command, 76
DVDs, 323
Dynamic Host Configuration Protocol (DHCP),

291–292

430

declaring arrays

27_579940 bindex.qxd 3/21/05 6:15 PM Page 430

files (continued)
retrieving from FTP or SMTP server, 160
searching with vi editor, 133
shell scripts handling, 255–257
size, checking during download, 347
sorting output of command or file in specified

order (sort command), 163–165
splitting command output to multiple locations

(tee command), 165
system logging, 269–270
temporary, cleaning up (trap), 256–257
types, 60, 63

finding files
directory (find command), 161–163
by name (which and whereis commands),

59–60
with resource-heavy command, 60

finding information about commands, 108–110
Fink program, 368
fireproof safe, 325
firewall

implementing built-in, 224
shell scripts, network administration, 300

firmware, 9
flags, 108
flat files, 384
floppy diskettes, 323
flow control, shell scripting
case statement, 237–239
comparison operators, 235–236
if-then statement, 233–234
multiple conditions, 237
test command, 234–235
until statement, 240
while statement, 239–240

foreground process, suspending, 197
forked file structure, Mac OS X, 386
formatting, text

data, transforming into report, 173–174
editor, choosing, 125

forward slash (/). See root directory
Free Software Foundation

archive site, 346, 396
info page help documents (info command), 110
licensing, 345

FreeBSD
DHCP, 292
source codes, checking integrity, 349
system library files, 102

Freshmeat archive, 346, 396
FrontPage (Microsoft), 396
FTP (File Transfer Protocol)

described, 155–160, 286
firewalls, 300
remote system login, 20
source code, downloading, 347

full backup, 323–324
full path name, 84
functions, Perl programming

file system access functions (open, close,
opendir, readdir, and closedir),
308–310

limited scope variable functions (my and local
operators), 310–311

G
game shells, 92–93
Gassée, Jean-Louis (Be Inc. founder), 371
GCC (GNU Compiler Collection), 363–364
GCOS (General Comprehensive Operating

System) field, 33, 41
GE (General Electric), 1
general information Web sites, 423
generic run control files, 96
Gentoo Linux, 368
GID (group ID)

setting, 33, 38
transferring files, 120

GMT (Greenwich Mean Time), 199
GNU Compiler Collection (GCC), 363–364
GNU (GNU’s Not Unix) Project

history, 3
info page help documents (info command), 110
libraries, 102
source code compilation tools, 363–364
tarfile creation scripts, 328
zip compression (gzip), 329–331, 332–333

GNUPG (Gnu Privacy Guard), 225
GPL (GNU General Public License), 3, 345

432

files (continued)

27_579940 bindex.qxd 3/21/05 6:15 PM Page 432

graphical user interface. See GUI
greater than sign (>), 244–245
Greenwich Mean Time (GMT), 199
group ID. See GID
grouping multiple commands with braces, 173
groups

account information (/etc/passwd file), 31–34
accounts, 29–30, 30
adding, 41
commands, listed, 40–41
encrypted password entries and aging, local

users (/etc/shadow file), 34–37
file ownership, 120
information (/etc/group file), 37–38, 47–50
Linux, 45
Mac OS X, 39–40, 44–45
managing (groupadd, groupmod, and

groupdel commands), 43
membership, listing (groups command), 49–50
Solaris, 46

GUI (graphical user interface)
administration tools, starting, 45
Linux, 45
logging in, 14–17
Mac OS X user management, 44–45
Solaris, 46
Unix history, 4

H
hacking password discovery programs, 216–217
halt command, 25
hard drive

backups, 323
Mac OS X folders, 373
organization, 53–54

hard links, 63
hardware

clock, 199, 201
failure, 215
identifying, 214
kernel, 4
off-site backups, 325

hashmark character (#), 227–228, 306

header, TCP, 284
“Hello World” exercises

Perl programming, 303–305
shell script, creating simple, 183

help
command, 25–27
info pages (info command), 109–110
keyword searches, 27–28
keywords to related files (apropos command),

110
sections, commonly used, 27
vi editor (man vi command), 141–142

heterogeneous environments, wildcards in, 112
hiding files or directories, 62
home directory

described (home), 56, 59
files, listing, 56, 86
location, 33–34
Mac OS X, 376–377
user, adding, 41

hostnames
current machine escape sequence, 83
Linux login, 18
TCP/IP, 288–289

HR (human resources) group permissions, 30
HTTP (Hypertext Transfer Protocol), 285, 297
hyphen (-), 69

I
iBiblio archive, 346
IBM Tivoli Storage Manager backup suite, 341
ICMP (Internet Control Message Protocol),

284–285, 293
IDs, process, 181–182, 188–189
IEEE (Institute for Electrical and Electronics

Engineers) standard 1003, 3
if...else commands, 312, 315
if-then statement, 233–234
IGMP (Internet Group Management Protocol), 285
IIS (Microsoft), 396
incremental backup, 323–324
info pages (info command), 109–110

433

info pages (info command)

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 433

information
about accounts (/etc/passwd file), 31–34
commands, finding, 108–110
group (/etc/group file), 37–38
shell scripting, 264
user and group commands, 47–50

initialization process (init), 11–12, 181
inode

described, 63
size errors, detecting, 77

input, checking with Perl programming, 313–317
input, redirecting

commands, 112–113
shell scripting, 244–245

insert mode, vi text editor
defined, 128
entering, 134–135, 140–141

installation, software, 365–367. See also build,
software

Institute for Electrical and Electronics Engineers
(IEEE) standard 1003, 3

interactive mode
login session, recording (script command),

165
restore command, 339–340

interface configuration (netstat -i), 294–295
Internet Control Message Protocol (ICMP),

284–285
Internet Explorer (Microsoft), 396
Internet Group Management Protocol (IGMP),

285
invoking shell, 89, 230
IP (Internet Protocol)

address, defined, 21
described, 284
DNS services, finding, 289
routing, 286–287, 288

J
job control, 196–197
Jobs, Steve (Apple founder), 371
John the Ripper password discovery program,

216–217

K
Kbackup suite, 341
kernel

configurations, retrieving (/proc file system),
194–195

directory (kernel), 56
loading, 9–11
login, viewing, 18
process attributes, reporting, 188
Unix, 4

keyboard input
reading, 232
redirecting, 244

keyword searches, help
document-related files (apropos command),

110
man (manual) pages, 27–28

Knoppix, 6–8, 397
Korn, David (Korn shell creator), 5
Korn shell (ksh)

described, 5, 90
options, available, 102
run control files, 94
scripting, 240

L
latency, shell script measuring, 300–302
LaTeX text formatter, 125
length, measuring file (wc command), 118–119
less than sign (<), 244–245
level, 270
library files

creating (libtool), 363
directory (lib), 56
information about (pkg-config), 363
nonstandard locations (LD-LIBRARY_PATH),

103
shell functions, 252
verbose information, printing (LD_DEBUG), 103

Library folder, Mac OS X, 375, 377
licensing

open source, 344–345
Unix/Linux versions, 3

434

information

27_579940 bindex.qxd 3/21/05 6:15 PM Page 434

limited-time accounts, 37
lineage, displaying process, 191–192
lines of code

changing, 137–139
first or last 10, viewing, 72
new, creating, 82
separator, specifying, 177
sequence beginning, 151–152
unused, marked as, 127

lines of text
copying with vi editor (yy command), 139–140,

141
deleting, 137
joining two (j command), 139
moving around files, 128–129
multiple, processing, 172
pasting (p paste command), 139–140
processing multiple, 172
single, processing, 172
words, counting, 177

links
file system, 63–67
symbolic, 366

Linux. See also Red Hat Linux
account information file (/etc/passwd), 31
booting messages, 13
build-from-source package systems, 368
building and installing software (GNU make

command), 354
command line login, 17–19
executable files, discerning (file command),

182
group information file (/etc/group), 37
GUI, 45
history, 2, 3
kernel, 10–11
log files, 269
ls command output, 106–107
password file (/etc/shadow), 34
process configurations, retrieving (/proc file sys-

tem), 195
process tree, sample, 191–192
reports and log rotation, 206–207
running processes, listing (ps tool), 183, 184

system clock, synchronizing (hwclock), 201
system processes, running, 186

Linux Software Map archive, 346
Linuxberg archive, 346
listing

accounts belonging to group, 38
delegated commands, 47
directory contents (ls command), 61–62
file permissions, 121
home directory files, 86
mounted system elements, 78
source code directory contents, 352
tarfile contents, 327
variables defined in any shell, 98
who is logged in (who command), 47

log file
cron output, 208
data, transforming into report, 173–176
initialization, 12
rotation, scheduling, 206–207
script changes, 228

logger system utility, 275
logging in

auto Mac OS X, setting, 45
command line, 17–20
described, 13
GUI, 14–17
ID, user, 32, 36
interactive session, recording (script com-

mand), 165
remote system, 20–23
shell display, 24, 34
user accounts, switching, 46–47

logging out, 24
logwatch system log monitoring software,

277–278
LoneTar backup suite, 341
ls command, 106–108, 245
Lynx Web browser and FTP client, 357–359

M
Mac OS 9

folders, 373, 376
Mac OS X versus, 372–373

435

Mac OS 9

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 435

Mac OS X
administration, 378–379
Applications folder, 374–375
command-line interface, 379–382
directory services and NetInfo, 382–386
executable files, discerning (file command),

182
file system, 373, 386
GUI users and groups, 44–45
history, 3, 371–372
home directory, 376–377
initialization process, 11–12
Library folder, 375
log files, 269
login screens, 15–17
Mac OS 9 folders, 376
Perl interpreter, finding, 304
permanent folders, 374
preference files, 379
ps tool, 184
root user account, 387–388
RPM packages, 368
running processes, listing (ps tool), 184
SFTP, 155–157
software, building, 343, 359
System folder, 375
system processes, running, 187–188
top command, 193
users and groups, 39–40, 44–45, 375

magazines, 423
magnetic tape, 323
maintenance issues

file system quotas, 122–124
source code installation techniques, 365–367

make command, 354–355, 359
makefile

development tools, 362–363
syntax, 360–362

managing
accounts (useradd command), 41–43
file system, 74–77
groups (groupadd, groupmod, and groupdel

command), 43

memory, 4
output from cron, 207–208

Mandrakelinux
GUI administration tool, starting, 45
login, 14, 18

manual pages (man command), 109
MaraDNS package, 349–350
Massachusetts Institute of Technology (MIT), 1
matching characters, wildcards, 111–112
mathematics

in Perl, 306–307
shell, 236

media backup types, 323, 325
memory, 4
messages

boot, viewing, 12
discarding, 280
error, redirecting, 113
incorrect password, 16
Linux booting, 13
password, time to change, 36
Perl warnings, turning on, 317
syslogd, 270, 274–275
system popping up in text file, 142

metacharacters
commands, 111–112
described, 150–154
replacing text, 146

Microsoft FrontPage, 396
Microsoft IIS, 396
Microsoft Money, 396
Microsoft Office

comparable Unix programs, 396
files, transferring all, 112

Microsoft Outlook, 396
Microsoft Virtual PC, 397
Microsoft Windows

administrative tools, 29, 394–395
commands, compared, 391–394
programs, 395–397
remote login via telnet, 23
structure, 389–391
within Unix, 409
Unix within, 397–409

436

Mac OS X

27_579940 bindex.qxd 3/21/05 6:15 PM Page 436

MIT (Massachusetts Institute of Technology), 1
modifying

files, 72–74
group accounts, 43

Money (Microsoft), 396
monitor, 244
monitoring

services, 223–224
system clock (date command), 200
system logging, 276–280

mounting file system, 77–79
Movies/Music/Pictures folder, Mac OS X, 377
moving

all files with specified extension, 112
to directory (cd command), 58–59
files to another location without copying (mv com-

mand), 72–73
within files with vi editor, 128–132

MS-DOS
remote login via telnet, 23
Windows interface, 391–394

MULTICS (Multiplexed Operating and Computing
System), 1

multiple commands
editing (-e option), 169–170
grouping with braces, 173

multiple conditions, flow control, 237
multiple events, complex scheduling, 206
multiple lines of text, 172
multiplication operator (*), 236

N
nadvsh (New Adventure Shell), 93
names

file or directory, changing (mv command), 73
file system case-sensitivity, 57
finding files by (which and whereis com-

mands), 59–60
group, 38, 43

nameserver, 289
navigating file system

commands, listed, 57–58
current location, showing (pwd command), 58

directory, moving to (cd command), 58–59
directory contents, listing (ls command), 61–62
names, finding files by (which and whereis

commands), 59–60
resource-heavy find command, 60
type of file (file command), 60

Nessus vulnerability scanner, 224
nested functions, 249–250
NetBSD system

downloaded source files, checking, 349
executable files, discerning (file command),

182
process attributes, reporting, 188
running processes, listing (ps tool), 183–184

NetInfo
current database, viewing, 39–40
database backup and restoration, 385
described, 382–384
nidump and niload, 384–385
system startup, 385–386

netmasks, 286–287
network

backup, 323
card, assigning IP address to, 292
connection, identifying, 214
file system, 53
request, configuring, 290–291
roundtrip, timing (awk), 300–302
TCP/IP address, 286–287

network connection
DNS testing (nslookup, dig, and host),

293–294
interface configuration (netstat -i), 294–295
watching for incoming (inetd daemon),

296–297
Network File Services (NFS), 219, 238–239
Network Time Protocol (NTP), 201–202
New Adventure Shell (nadvsh), 93
newline

described, 82
printing count of (wc command), 165–166

news Web sites, addresses listed, 423
NeXT software, 371–372
NeXTStep, 382

437

NeXTStep

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 437

NFS (Network File Services), 219, 238–239
nidump, 384–385
niload, 384–385
NMAP port scanning tool, 225
Notepad, 396
notes files, 344
NTP (Network Time Protocol), 201–202
numbers inside brackets ([0-9]), 154
numeric values, testing, 316
Nvi text editor, 147
NVRAM, 9

O
Office (Microsoft)

comparable Unix programs, 396
files, transferring all, 112

one-time scheduling execution (at command),
211

open source licensing
BSD, 344–345
GPL, 345

OpenBSD, 349
operators

arithmetic in shells, 236
Perl programming, 306–307

order, sorting output in specified (sort
command), 163–165

OS 9. See Mac OS 9
OS X. See Mac OS X
Outlook (Microsoft), 396
output

argument, influencing, 107–108
commands, sending files to backup (cpio),

333–335
file content (cat command), 116–117
as input for another command, 114–115
managing from cron, 207–208
redirection, 112–113, 244–245
sorting in specified (sort command), 163–165
splitting to multiple locations (tee command),

165
output formatting language. See AWK program
ownership, file, 120

P
packets, 283–284
parameters, passing shell functions to,

248–249
parent directory, 86
parent processes, 192
partition, 53–54
password

administrative, prompting (sudo command),
218–221

described, 216
discovery programs, 216–217
encrypted entries and aging, local users

(/etc/shadow file), 34–37, 41
file, creating in Mac OS X, 384
file entry field, 32–33
forgotten, 19
group, 38
login, 15–16, 19
new account, setting, 42
remote login, 22, 157
system accounts, 221

pasting lines of text (p paste command),
139–140

patch and diff source code, 364–365
patches

activating, 222
open source projects, 346

path
absolute and relative, 56–57
full path name and, 84
navigating file system, 86
PATH environment variable, 84–85
relative and absolute, 85–86

PATH environment variable, 84–85
patterns, 175–176
pax (portable archive exchange), 340
PDKSH (Public Domain Korn shell), 5, 94
performance, tracking (traceroute), 298–299
period or dot (.), 62, 86, 150, 310
Perl (Practical Extraction and Report Language)

programming
advantages, 305
array, traversing (foreach loop), 312

438

NFS (Network File Services)

27_579940 bindex.qxd 3/21/05 6:15 PM Page 438

data variable manipulation functions chomp,
join, and split, 307–308

described, 303
do...while loop, 312
file system access functions (open, close,

opendir, readdir, and closedir),
308–310

“Hello World” exercise, 303–305
if...else commands, 312
input, checking, 313–317
limited scope variable functions (my and local

operators), 310–311
operators, 306–307
print function, 307
shells, 92, 94
troubleshooting scripts, 317–320
variables, 306
while loop, 311–312

permanent folders, Mac OS X, 374
permissions

file system, listed, 68–69
group accounts, 30, 38
scripts, security and, 261
specifying set, 70–71
symbolic mode, changing, 69–70

PGP program, 396
Photoshop (Adobe), 396
PID (process ID)

described, 181–182
kill command, 189

ping network test, 293
pipes

commands, 114
cron output, 207–208
output, 245

pkill command, 191
PKZIP, 396
plus, equal sign (+=), 360
portable archive exchange (pax), 340
ports, TCP destination and source, 284
POSIX (Portable Operating Systems Interface)

standard, 3
poweroff command, 25
Practical Extraction and Report Language

programming. See Perl programming

precompiled software packages, 367–369
preference files, Mac OS X, 379
prerequisite, building software with, 357–359
printing

count of newlines, characters, or words
(wc command), 165–166

Perl programming, 307
sequences (grep command), 160–161
verbose library file information (LD_DEBUG), 103

process
attributes, 188–189
background and foreground, managing, 196–197
described, 181–182
directory (proc), 56
file system (/proc), 194–195
kernel controlling, 4
lineage, displaying, 191–192
run level grouping, 11
running, checking (ps process status command),

183–185
states, checking running, 185
stopping (kill command), 189–191
system, 185–188
top command, 192–194
zombie, 192

process ID (PID)
described, 181–182
kill command, 189

program
execute permission, 68, 70, 120
info page help documents (info command),

109–110
invoking, 84
logging (syslogd), 270
running in background, 196–197
running with enhanced capabilities (SETUID and

SETGID), 195–196
security, 224–225
timing with system clock, 199–202
Windows (Microsoft), 395–397

programming. See Perl programming
programs, executable. See commands
prompt, customizing, 82–83, 97
Public Domain Korn shell (PDKSH), 5, 94
Public folder, Mac OS X, 377

439

Public folder, Mac OS X

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 439

Q
question mark (?), 111, 153
question mark, equal sign (?=), 360
Quicken, 396
quitting

FTP session, 160
sed editor, 172
vi editor with prompt for saves, 133
vi editor without saving changes, 141

quotas, maintaining file system, 122–124

R
RAM (random access memory), 4
RARP (Reverse Address Resolution Protocol),

285
read permission, 68, 70, 120
reading

file and appending after line address, 172
file permissions, 121

README files, 344, 347
Read-Only Memory (ROM), 9, 13
rebooting system, 25
recording interactive login session (script

command), 165
recursion shell functions, 249–250
Recycle Bin, 390–391
Red Hat Linux

bash run control files, 95–96, 97–98
commenting script, 228–229
GUI administration tool, starting, 45
logwatch, 277–279
NFS service script, 238–239
scheduling backups, 206
Z shell variables, 100

redirection
input and output for individual actions, 112–113
operators, 244–245
Perl functions, 310
piping, 114

regular expressions
described, 149–150
searching for everything but named string, 161
single character, matching, 155

relative path, 56–57, 85–86
remote administration, Linux, 45
remote files

directory (export), 56
synchronization (rsync), 340

remote system login
methods, listed, 20–21
password, incorrect, 19
ssh, 21–22
telnet, 23

removing. See deleting
repeating arguments (echo command), 59–60
replacing text (:s/ command), 143–146
reports

data, transforming into, 173–174
kernel process attributes, 188
Linux, scheduling, 206–207
processes for all users, 185

request
answering, 295–296
TCP/IP, sending, 293–295

resource-heavy find command, 60
restoring database, 385
restricting

access to services, 223–224
programs, 222
shells, 261–263

retrieving files, remote FTP or SFTP servers, 160
Reverse Address Resolution Protocol

(RARP), 285
RIP (routing information protocol), 286–287, 288
ROM (Read-Only Memory), 9, 13
root directory, 54, 55–56
root user account

backup commands, 326
commands, delegating (sudo), 46–47
described, 29
ID (UID 0) administrative access, 119, 217–218
Mac OS X, 387–388
system, obliterating, 73–74
system shutdown, 24–25

rotating system logs, 275–276
roundtrip, network, 300–302
routing information protocol (RIP), 286–287, 288

440

question mark (?)

27_579940 bindex.qxd 3/21/05 6:15 PM Page 440

routing TCP/IP, 286–287
RPM (RPM Package Manager)

logwatch, 277–278
software, installing, 367–369

run control files
ash shell, 95
bash, 96–98
generic, 96
listed, 94
Red Hat Linux with bash, 95–98

run level, 11
running process

in background, 196–197
checking (ps process status command),

183–185
with enhanced capabilities, 195–196
replacing (exec command), 181

S
Saint vulnerability scanner, 225
Sakoman, Steve (Be Inc. founder), 371
saving

files with vi editor, 133–134
quitting vi editor without, 141

scheduling
access, controlling, 208
backups, 324–325
complex, building, 206
cron routine execution, 202–205
crontab file, documenting, 205
one-time execution (at command), 209–211
output, managing from cron, 207–208
reports and log rotation on Linux, 206–207

scope, shell functions, 250–252
scripting. See shell scripting
scripting, network administration

firewalls, 300
latency (awk), 300–302
performance, tracking (traceroute), 298–299

scripting, shell
arrays, 257–260
attacks, 260–261
Bourne shell, advantages of, 88–89

choosing shell, 240–241
command substitution, 246
commenting and documenting, 227–229
environment and shell variables, 246–247
exit status, previous command (? variable),

232–233
file handling, 255–257
flow control, 233–240
input and output redirection, 244–245
invoking shell, 230
keyboard input, reading, 232
network latency checking, 300–302
portable configure tool (autoconf), 362
security, 260–263
signals and traps, 254–255
special variables, listed, 232
syntax, 182–183
system administration, 263–266
uses, 243–244
variables, 231

scripts
Apple, 373
source code, 362–363
system shutdown, 25

scrolling, text, 129
searching

files with vi editor, 133
for sequences and printing results (grep com-

mand), 160–161
Secure File Transfer Protocol (SFTP)

described, 155–160
remote system login, 20

Secure SHell (ssh) remote system login,
20, 21–22

security
access to services, monitoring and restricting,

223–224
accounts, removing unneeded, 221–222
administrative access, limiting, 217–221
assets, assessing, 214
basic principles, 213
firewalls, 224, 300
library location (LD_LIBRARY_PATH), 103
passwords, 216–217

441

security

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 441

security (continued)
patches and bug fixes, 346
patching, restricting or removing programs, 222
potential problems, 214–215
programs, 224–225
services, disabling unneeded, 223
shell scripting, 260–263
taint mode, Perl scripts, 314
viruses, downloading in source code, 348–349
Web sites, addresses listed, 422

sed editor
commands, most useful listed, 171–172
described, 168–169
files, denoting (-f argument), 170–171
lines, processing multiple, 172
multiple commands, grouping with braces, 173
multiple editing commands (-e option),

169–170
single-line, processing, 172

segments, data, 283–284
selector, 270
sentences

deleting, 137
moving among, 129

sequence number, TCP, 284
sequences, searching and printing results

(grep command), 160–161
services

access, monitoring and restricting, 223–224
disabling unneeded, 223
Mac OS X, 386
security issues, 214, 215

SETGID, 195–196
setting system clock (date command), 200
SETUID, 195–196
SFTP (Secure File Transfer Protocol)

described, 155–160
remote system login, 20

sh. See Bourne shell
shebang (#!), 182–183, 230
shell

ash shell, 89
available, 92
bash, 89–90

Bourne shell, 88–89
C shells, 91–92
changing default, 87–88
changing temporarily, 87
current, configuring, 82
described, 5
display, logging in, 24
game shells, 92–93
job control, 196–197
Korn shell, 90
multiple lines, editing, 170
Perl shells, 92
reasons for choosing, 86–87
run control files, 93–98
user’s login, 34
variables, 246–247
zsh, 90–91

shell functions
command-line options, checking validity

(getopts), 253–254
described, 247–248
libraries, 252
nested functions and recursion, 249–250
parameters, passing to, 248–249
returning values, 249
scope, 250–252

shell scripting
arrays, 257–260
attacks, 260–261
Bourne shell, advantages of, 88–89
choosing shell, 240–241
command substitution, 246
commenting and documenting, 227–229
environment and shell variables, 246–247
exit status, previous command (? variable),

232–233
file handling, 255–257
flow control, 233–240
input and output redirection, 244–245
invoking shell, 230
keyboard input, reading, 232
network latency checking, 300–302
portable configure tool (autoconf), 362
security, 260–263

442

security (continued)

27_579940 bindex.qxd 3/21/05 6:15 PM Page 442

signals and traps, 254–255
special variables, listed, 232
syntax, 182–183
system administration, 263–266
uses, 243–244
variables, 231

shell scripts, network administration
firewalls, 300
latency (awk), 300–302
performance, tracking (traceroute), 298–299

shutdown command, 25
shutting power off, 24
signals

shell scripting, 254–255
stopping processes, 190
suspending processes, 197

Simple Mail Transfer Protocol (SMTP), 286
single character, regular expressions matching,

155
single line of text, processing, 172
Single Unix Specification (SUS) standard, 3
single-screen chunks, breaking file content into

(more and less commands), 117
Sites folder, Mac OS X, 377
sleep tool, 196
SMTP (Simple Mail Transfer Protocol), 286
Snort network intrusion detection tool, 225
soft links, 63–64
software

choosing, 346
Web sites, addresses listed, 422–423

software, installing. See source code
Solaris

account information file (/etc/passwd), 32
administration tool, 46
boot process, 9–10
group information file (/etc/group), 38
kernel, 11
log files, 269
login screen, 15
password file (/etc/shadow), 35
process configurations, retrieving (/proc file

system), 194
process states, 185

ps tool, 184
stopping processes (killall command), 191
system initialization, 12
system processes, running, 186–187
top command, 192–193

sorting output in specified order (sort
command), 163–165

source code
beginning build, 352–354
building software, sample, 355–357
choosing software, 346
described, 2, 343–344
downloading files, 346–348
extracting, 351
GNU compilation tools, 363–364
maintenance, installation techniques for better,

365–367
make command, 354–355, 359
makefile syntax, 360–362
open source licensing, 344–345
of operating system, 2
patch and diff, 364–365
precompiled software packages versus, 367–369
prerequisite, building software with, 357–359
scripts and makefile development tools,

362–363
troubleshooting build, 367
verifying, 348–350

source port, 284
Sourceforge archive, 396
space, text, 128
special file system, 53
special variables, listed, 232
spelling mistakes, correcting with substitution

command, 143–146
square brackets ([]), 111, 150
square brackets with asterisk between

([*]), 151
ssh (Secure SHell) remote system login,

20, 21–22
Stallman, Richard (GNU Project engineer), 3
standard error (STERR), 244
standard in (STDIN), 244
standard out (STDOUT), 244

443

standard out (STDOUT)

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 443

starting
process, 182
vi editor, 126–128

states, checking running, 185
status, file system backups, 337
stopping

process, 189–191
shell jobs, 197

storing backups, 325
stream editor (sed), 168–173
strings, 161. See also regular expressions
subdirectory

backup, scheduling, 203
scripts, 261

subnetworks, TCP/IP, 286–287
subshell, 115
substitution

commands, 114–115
sed text editor, 168–169

subtraction operator (-), 236
suites, backup, 341
SunFreeware archive, 397
superuser. See root user account
SUS (Single Unix Specification) standard, 3
SUSE Linux distribution tool, 45
swap, 4
swatch system log monitoring software, 279–280
switch user (su command), 218
symbolic mode, changing permissions (chmod

command), 69–70
synchronizing

Linux system clock (hwclock), 201
NTP system clock, 201–202
remote file (rsync), 340

syslogd utility
configuration file, 271–274
described, 270
logger system utility, 275
messages, viewing, 274–275

system
administration with shell scripting, 263–266
configuration files (etc directory), 56
mounted files, listing, 78–79

system accounts, 30

system clock
checking and setting (date command), 200
configuring, 199
Linux, synchronizing (hwclock), 201
NTP, synchronizing system with, 201–202

System folder, Mac OS X, 375
system logging

files, 269–270
monitoring, 276–280
rotating logs, 275–276
syslogd utility, 270–275

system process, 185–188
system shutdown

command line, 25
privilege, 24
shutting power off versus, 24

system startup
described, 9–13
NetInfo, 385–386

System V distribution
log files, 269
process states, 185
ps tool, 184, 185
stopping processes (killall command), 191

T
table of contents, tarfile, 326
taint mode, Perl scripts, 314
tape archives, creating (tar command),

326–328, 332–333
tarball, 346–347
tarfile, 326
target argument

described, 107
make process, 361
multiple required, 108

task, shell scripting, 265
TCP (Transmission Control Protocol), 283–284
tcpd (TC Wrappers Daemon), 223–224
TCP/IP (Transmission Control Protocol/Internet

Protocol)
answering request, 295–296
ARP, 285

444

starting

27_579940 bindex.qxd 3/21/05 6:15 PM Page 444

DHCP, 291–292
DNS, 289
domain and host names, 288–289
FTP, 286
HTTP, 285
ICMP, 284–285
IGMP, 285
IP routing, 284, 286–287, 288
network address, subnetworks, netmasks, and

routing, 286–287
network request, configuring, 290–291
RARP, 285
request, sending, 293–295
RIP, 286–287, 288
SMTP, 286
subnetworks, 286–287
UDP, 285
watching for incoming network connections

(inetd daemon), 296–297
TCPWrappers code, 345
TCSH (TENEX C shell)

described, 5
options available, 102
run control files, 94
variables, customizing environment, 99

telephone number, metacharacter matching, 155
telnet, 20, 23, 396
templates, makefile (automake), 362
temporary files

cleaning up (trap), 256–257
directory holding between boots (tmp), 56
mounting (mnt), 56, 77
security issues, 261

TENEX C shell. See TCSH
terms, substituting, 101
test command, 234–235
testing

conditions (if ... else commands), 312
DNS (nslookup, dig, and host), 293–294

text
copying with vi editor (yy command), 139–140, 141
deleting, 137
joining two (j command), 139
moving around files, 128–129

multiple, processing, 172
pasting (p paste command), 139–140
processing multiple, 172
replacing (:s/ command), 143–146
single, processing, 172
word portion, copying (yw command), 140
words, counting, 177

text, patterns of. See regular expressions
text editor, Emacs, 110
text editor, full streams. See sed editor
text files

system logs, 275
type, showing (file command), 60

theft, hardware, 215
tilde (~), 86, 127
time

current, showing, 82
sleep tool, 196

timestamp, updating (touch command), 118
timing programs, 199–202
TLD (top-level domain), 289
top command process, 192–194
Torvalds, Linus (Linux creator), 3
tracking network performance (traceroute),

298–299
Transmission Control Protocol (TCP), 283–284
Transmission Control Protocol/Internet Protocol.

See TCP/IP
traps, shell scripting, 254–255
trigger events, logging, 279–280
Tripwire file integrity checker, 224
Trojan horse, 348–349
troubleshooting

build, 367
Perl scripts, 317–320

Tucows archive, 346

U
UDP (User Datagram Protocol), 285
UID (user ID)

adding, 41
current escape sequence, 83
file location, 33

445

UID (user ID)

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 445

undo commands, text editing, 142
UNICS (Uniplexed Operating and Computing

System), 1
Universal Time (UTC), 199–200
Unix

compared to Windows (Microsoft), 389–391
file system, 5
history, 1
kernel, 4, 10
KNOPPIX distribution, running from CD-ROM, 6–8
shells, 5
utilities, 6
versions, 2–3
within Windows (Microsoft), 397–409, 409

until statement, shell scripting flow control,
240

updating
backup files, 328
file timestamp (touch command), 118

User Datagram Protocol (UDP), 285
user ID. See UID
username

current, escape sequence, 83
file entry field, 32
login, 15–16, 19
remote login, authenticating, 157
UID versus, 119

users
accounts, 29–30, 30
currently logged in, listing (who command),

47–48
encrypted password entries and aging, local

users (/etc/shadow file), 34–37
error, data loss from, 215
group information (/etc/group file), 37–38
information about accounts (/etc/passwd file),

31–34
information commands, 47–50
Linux, 45
logging into another account, 46–47
Mac OS X, 39–40, 44–45
permissions, 120
processes, reporting for all, 185
Solaris, 46

Users directory, Mac OS X, 375

UTC (Universal Time), 199–200
utilities, 6. See also syslogd utility
U/Win, 397

V
validating backups (restore command),

338–340
variable-length file directory (var), 56
variables

makefile syntax, 360
Perl programming, 306, 315
shell scripting, 231
viewing, 98–99

vendors Web sites, addresses listed, 422
verifying

backups, 325
source code, 348–350

Veritas NetBackup suite, 341
versions

Unix, 2–3
vi editor, 146–147

vertical line character (|), 114, 245
vi text editor

changing characters, words, or lines, 137–139
commands, running, 143
copying lines (yy command), 139–140, 141
deleting characters, 136–137
described, 125
exiting and saving files, 133–134
help (man vi command), 141–142
insert mode, entering, 134–135, 140–141
joining two lines (j command), 139
moving within files, 128–132
pasting lines (p command), 139–140
quitting without saving changes, 141
searching files, 133
starting, 126–128
text, replacing (:s/ command), 143–146
versions, 146–147
word portion, copying (yw command), 140

viewing
files, 71–72
variables, 98–99

446

undo commands, text editing

27_579940 bindex.qxd 3/21/05 6:15 PM Page 446

Vile (Vi Like Emacs) text editor, 147
Vim (Vi IMproved) text editor, 146
virtual file system, 53
virtual memory, 4
Virtual PC (Microsoft), 397
viruses

data loss from, 215
source code, checking, 348–350

VMWare, 397, 409

W
watching for incoming network connections

(inetd daemon), 296–297
Web browser

downloading source code with, 347
listed, 396
Lynx, installing, 357–359

Web server, Mac OS X, 377
Web sites, addresses listed

basics, 421
fun stuff, 424
history, 421
magazines, 423
news and general information, 423
security, 422
software, 422–423
vendors, 422

while loop
Perl programming, 311–312
shell scripting, 239–240

wildcards
described, 111
metacharacters versus, 150

Winamp, 396
window

size, checking, 97
TCP, 284

Windows (Microsoft)
administrative tools, 29, 394–395
commands, compared, 391–394
programs, 395–397
remote login via telnet, 23
structure, 389–391
within Unix, 409
Unix within, 397–409

Wine tool, 409
Winzip software, 396
WordPad software, 396
words

beginning or ending characters, matching, 146
changing, 137–139
counting on specified line, 177
moving among, 129
portion, copying (yw command), 140
printing count of (wc command), 165–166

write permission, 68, 70, 120
WS FTP program, 396

X
Xcode Tools, 343

Y
Y2K problem, 200

Z
Z shell (zsh)

described, 90–91
options available, 102
run control files, 94
variables, 100

Zip drives, 323
Zoidberg Perl-based shell, 92
zombie process, 192

447

zombie process

In
de

x

27_579940 bindex.qxd 3/21/05 6:15 PM Page 447

27_579940 bindex.qxd 3/21/05 6:15 PM Page 448

GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software--to make sure the software is free for all its users. This General Public License
applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the
GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any prob-
lems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the dan-
ger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution, and modification follow.

28_579940 eula.qxd 3/21/05 6:15 PM Page 449

Terms and Conditions for Copying, Distribution and Modification
0. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public
License. The “Program” that follows refers to any such program or work, and a “work
based on the Program” means either the Program or any derivative work under copyright
law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution, and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part con-
tains or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when running it for such interactive use in the most ordinary way, to print or dis-
play an announcement including an appropriate copyright notice and a notice that there
is no warranty (or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: If the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, this License and its terms do not apply to those sec-
tions when you distribute them as separate works. But when you distribute the same sec-
tions as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

28_579940 eula.qxd 3/21/05 6:15 PM Page 450

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange.

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

c) Accompany it with the information you received as to the offer to distribute corre-
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica-
tions to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component itself accompa-
nies the executable.

If distribution of executable or object code is made by offering access to copy from a des-
ignated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, noth-
ing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, dis-
tributing or modifying the Program or works based on it.

28_579940 eula.qxd 3/21/05 6:15 PM Page 451

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restric-
tions on the recipients’ exercise of the rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, the only way you could satisfy both it
and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of
that system; it is up to the author/donor to decide if he or she is willing to distribute soft-
ware through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries not
thus excluded. In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribu-
tion conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the shar-
ing and reuse of software generally.

28_579940 eula.qxd 3/21/05 6:15 PM Page 452

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

28_579940 eula.qxd 3/21/05 6:15 PM Page 453

	Cover
	Contents
	Introduction
	Unix Fundamentals
	Brief History
	Unix Versions
	Operating System Components
	Unix Kernel
	Shells
	The Other Components

	Summary

	First Steps
	System Startup
	Logging In and Out of Unix
	Logging In via GUI
	Logging In at the Command Line
	Remotely Logging In
	The Shell
	Logging Out

	System Shutdown
	Getting Help with Man Pages
	Summary

	Understanding Users and Groups
	Account Basics
	Root Account
	System Accounts
	User Accounts
	Group Accounts

	Managing Users and Groups
	/etc/passwd
	/etc/shadow
	/etc/group
	Mac OS X Differences

	Managing Accounts and Groups
	Account Management
	Group Management
	User Management with Graphical User Interface Tools

	Becoming Another User
	User- and Group-Related Commands
	Summary
	Exercises

	File System Concepts
	File System Basics
	Directory Structure
	Root’s Basic Directories

	Paths and Case
	Navigating the File System
	pwd
	cd
	which and whereis
	find
	file
	ls

	File Types
	Links
	File and Directory Permissions
	Changing Permissions
	Using chmod in Symbolic Mode
	Using chmod with Absolute Permissions

	Viewing Files
	Creating, Modifying, and Removing Files
	Deleting Files
	Making and Removing Directories

	Basic File System Management
	Making File Systems Accessible
	Summary
	Exercise

	Customize Your Working Environment
	Environment Variables
	The PS1 Variable
	Other Environment Variables

	Understanding the Path
	The PATH Environment Variable
	Relative and Absolute Paths
	Moving around the File System

	Choosing a Shell
	Changing a Shell Temporarily
	Changing the Default Shell
	Which Shell?

	Configuring Your Shell
	Run Control Files
	Environment Variables
	Aliases
	Options

	Dynamic Shared Library Paths
	LD_LIBRARY_PATH
	LD_DEBUG

	Summary
	Exercises

	Unix Commands In-Depth
	Anatomy of a Command
	Finding Information about Commands
	man
	info
	apropos

	Command Modification
	Metacharacters
	Input and Output Redirection
	Pipes
	Command Substitution

	Working with Files and Directories
	ls
	cd

	Common File Manipulation Commands
	cat
	more/less
	mv
	cp
	rm
	touch
	wc

	File Ownership and Permissions
	File Ownership
	File Permissions
	umask
	Executable Files

	Maintaining File System Quotas
	Summary
	Exercise

	Editing Files with Vi
	Using Vi
	Moving within a File
	Searching Files
	Exiting and Saving a File
	Editing Files
	Deleting Characters
	Change Commands
	Advanced Commands

	Help!
	Running Commands
	Replacing Text

	Versions of Vi
	Summary
	Exercises

	Advanced Tools
	Regular Expressions and Metacharacters
	Understanding Metacharacters
	Regular Expressions

	Using SFTP and FTP
	More Advanced Commands
	grep
	find
	sort
	tee
	script
	wc

	Summary
	Exercises

	Advanced Unix Commands: Sed and AWK
	Sed
	Using the -e Option
	Sed Files
	Sed Commands

	AWK
	Extracting with AWK
	Working with Patterns

	Programming with AWK
	Summary
	Exercises

	Job Control and Process Management
	What Is a Process?
	Shell Scripts
	What Processes Are Running?
	ps Syntax
	Process States

	System Processes
	Process Attributes
	Stopping Processes
	The Process Tree
	Zombie Processes

	The top Command
	The /proc File System
	SETUID and SETGID
	Shell Job Control
	Summary

	Running Programs at Specified Times
	System Clock
	Checking and Setting the System Clock with Date
	Syncing Clocks on Linux with hwclock
	Syncing the System Clock with NTP

	Scheduling Commands to Run in the Future
	Routine Execution with Cron
	One-Time Execution with at

	Summary
	Exercise

	Security
	The Basics of Good Security
	Assets Worth Protecting
	Potential Issues

	Securing Your Unix System
	Password Security
	Password Discovery Programs

	Limiting Administrative Access
	UID 0
	Root Management Options
	Setting up Sudo

	System Administration Preventive Tasks
	Remove Unneeded Accounts
	Patch, Restrict, or Remove Programs
	Disable Unneeded Services
	Monitor and Restrict Access to Services
	Implement Built-in Firewalls
	Other Security Programs

	Summary
	Exercise

	Basic Shell Scripting
	Commenting and Documenting Scripts
	Getting Down to It
	Invoking the Shell
	Variables
	Reading Input from the Keyboard
	Special Variables
	Exit Status

	Flow Control
	Conditional Flow Control
	Iterative Flow Control

	Choosing a Shell for Scripting
	Summary
	Exercises

	Advanced Shell Scripting
	Advanced Scripting Concepts
	Input and Output Redirection
	Command Substitution: Back Ticks and Brace Expansion
	Using Environment and Shell Variables

	Shell Functions
	Returning Values
	Nested Functions and Recursion
	Scope
	Function Libraries
	getopts
	Signals and Traps
	File Handling
	Arrays

	Shell Security
	Where Can Attacks Come From?
	Taking Precautions
	Restricted Shells

	System Administration
	Gathering Information
	Performing Tasks
	Debugging Scripts

	Summary
	Exercises

	System Logging
	Log Files
	Introducing Syslogd
	Understanding the syslog.conf File
	What’s the Message?
	The Logger Utility

	Rotating Logs
	Monitoring System Logs
	Logwatch
	Swatch

	Summary
	Exercises

	Unix Networking
	TCP/IP
	Introducing TCP
	Introducing IP
	Other Protocols Used with TCP/IP
	Network Address, Subnetworks, Netmasks, and Routing
	with TCP/IP

	Setting Up a Unix System for a TCP/IP
	Network
	Configuring for a TCP/IP Network Request
	A Dynamic Setup
	Sending a TCP/IP Network Request
	Answering a TCP/IP Network Request
	inetd

	Network Management Tools
	Tracking the Performance of a Network with Traceroute
	Firewalls
	Routinely Checking Network Latency

	Summary
	Exercise

	Perl Programming for Unix Automation
	Perl’s Advantages
	Useful Perl Commands
	Variables
	Operators
	Basic Functions

	More Perl Code Examples
	Troubleshooting Perl Scripts
	Summary
	Exercises

	Backup Tools
	Backup Basics
	Determining What to Back Up
	Backup Media Types
	Backup Types
	When to Run Backups
	Verify Backups
	Storing Backups

	Backup Commands
	Using tar
	Compressing with gzip and bzip2
	cpio
	dump, backup, and restore
	Other Backup Commands

	Backup Suites
	Summary
	Exercise

	Installing Software from Source Code
	Understanding Source Code
	Open Source Licensing
	BSD Licenses
	GNU Public License

	Finding and Downloading Unix Software
	Choosing Your Software
	Downloading Files
	Verify the Source Code

	Building and Installing
	Extracting the Files
	Beginning the Build

	Introducing make, Makefiles, and make
	Targets
	The Makefile
	Tools to Help Create Makefiles
	GNU Compilation Tools
	diff and patch

	Installation Techniques for Better
	Maintenance
	Troubleshooting Build Problems
	Precompiled Software Packages
	Summary
	Exercises

	Conversion: Unix for Mac OS Users
	A Very Brief History of Mac OS X
	Differences between Mac OS 9
	and Mac OS X
	Folders Are Directories Too
	Required Folders
	Home Directory
	Administration
	Preference Files

	Unix and Mac OS X/Mac OS 9 Command
	and GUI Equivalents
	Differences between Mac OS X
	and Other Unix Systems
	Directory Services and NetInfo
	Using nidump and niload
	Backup and Restoration of the NetInfo Database
	System Startup
	File Structure Differences
	Root User Account

	Summary
	Exercises

	Conversion: Unix for Windows Users
	Structural Comparison
	Major Administrative Tools Comparisons
	Popular Programs Comparison
	Using Unix within Windows
	Using Windows within Unix
	Summary

	Answers
	Useful Unix Web Sites
	Unix Basics
	Unix History
	Unix Security
	Vendor Sites
	Software Resources
	Unix Magazines
	Unix News and General Information
	Fun Stuff
	SYMBOLS
	A
	B
	C
	G
	H I
	K
	L
	J
	M
	N
	P
	O
	Q
	R
	S
	T
	V
	X
	Y
	GNU General Public License

	Index

