
The Linguistic Command Line
	Aza	Raskin
 Humanized | aza@humanized.com 

I’m a Mac baby. Twenty-three

years ago, I was born. So was the

Macintosh.

Looking back, I haven’t fun-

damentally changed since my

lower-than-your-kneecap days.

I’m just a larger, differently pro-

portioned version of my younger

self. Unfortunately, the same

thing is also true for the GUI:

It’s matured, but hasn’t funda-

mentally changed in the past 23

years. We are still stuck juggling

windows in a time-wasting dance

to find the application we need to

get a task done.

Look at a screenshot of the

original Macintosh, and compare

it with one of the latest versions

of OSX. With the exception of

some new gadgets and some

smoke and mirrors, much of the

interface is still the same. Sure,

there’s Spotlight, a way to find

the stuff we lose in our morass

of folders and badly named files,

and Expose, a kludge to help us

wade through our windows. But

these are quick-fix patches on a

sinking metaphor. They keep us

in an unsatisfying marriage to

our windows and applications.

When we want to get some-

thing done, we still have to slog

to the application that does it,

dragging our content scream-

ing and kicking behind us.

Everywhere we look, our tasks are

needlessly compartmentalized,

and we are left schlepping hither

and thither. Take the example of

writing and posting a presenta-

tion to a website: A simple task

like this requires Photoshop to

edit the images, Excel to create a

spreadsheet, PowerPoint to com-

pile the presentation, TextEdit to

create the appropriate Web pages,

an FTP client to upload it to the

internet, and Firefox to view it.

Most of our time is spent just in

moving content from one applica-

tion to another. Then there is the

frustration from errors caused by

the cognitive overhead required

to switch applications, each of

which has its own idiosyncrasies.

The same keyboard shortcut,

Control-D, changes your font in

Word, but creates a bookmark

in Firefox. Trying to remember

whether the methods and short-

cuts we’ve learned in one applica-

tion work in another is a game of

chance. Compartmentalization of

tasks via uncoordinated applica-

tions frustrates our habits and

wastes our time. We shouldn’t

need to think about which appli-

cation we are using to know

how to spell check, look up word

definitions, change font size and

undertake other common tasks.

Applications are the cause of

another computer woe: software

bloat. Although bloat is partially

due to sloppy coding induced by

ever increasing computing power,

compartmentalization forces code

redundancy. Tasks rarely fall

completely within a single com-

partment: Word has an under-

powered drawing package, CAD

packages have underpowered

text-layout engines, and even

Google has a calculator. Thus we

arrive at the modern monolithic

application mired in mediocre

implementations of subtasks. My

computer has eight copies of spell

check; each features a different

version of the English language,

most lack a decent interface,

and less than half recognize my

name. When application com-

partmentalization is removed, so

is the unnecessary code overlap:

Disk and memory footprint drops,

development time decreases, and

usability and reliability increase.

Applications should take a les-

son from services on the Internet,

or even old command-line utili-

ties. Instead of reimplementing

common pieces of functionality,

applications should outsource

that functionality to an OS-level

service, some other local service,

or an Internet service. As a user,

imagine if you never needed to

teach your name to yet another

spell check, or—as a developer—

implement another instance of

spell check.

My father, Jef Raskin, was a

pioneer in early interface develop-

ment. His work included develop-

ing the first Macintosh at Apple,

and inventing “click and drag”

and other ubiquitous interface

metaphors. He’s the reason why

we use the word “font” for what

should more correctly be called

“typeface.” Toward the end of

his career, he outlined many of

his ideas—both radically differ-

ent and radically better—in his

book, The Humane Interface. The

challenge between task complex-

ity and selection simplicity was

included in his call for change.

“By applying the concept that a

in
te

ra
c

ti
o

n
s 

 
J

a
n

u
a

ry
 +

 F
e

b
ru

a
ry

 2
0

0
8

1�

FEATURE

as a service. Instead of arguing

for the abolition of applications,

we can champion services with a

universal way of accessing them.

That way, we can snap our fingers

and have the functionality we

need, regardless of the applica-

tion we happen to be using. This

shift also reframes the interface

challenge, which then becomes

this: If all functionality is avail-

able to us anywhere, at any time,

how do we tell the computer

which particular piece of func-

tionality we want?

We’re going to need a universal

way to access those thousands of

possible services we might want

to perform on our selected data—

from calculating the sum of the

values, to performing a Google

search on the text, to changing

the size at which it is displayed.

Current paradigms for accessing

this functionality don’t scale to

how we really work—i.e., across

applications, not within them.

Imagine grafting together the

endless menus for PowerPoint,

Mathematica, Firefox, and

Photoshop. Certainly, there would

be some overlap, but the result

would still be a Medusa’s head of

seething submenus. It would be

laborious to find anything in such

a monstrosity, and inefficient

to manually select a menu even

if we knew where to find it. We

headed toward graphical menus

initially because they made all

options visible, by allowing rec-

ognition of an option instead of

forcing the recollection of an

option. Jef Raskin and the rest of

the Macintosh team found that

menus worked well. In hindsight,

they worked well because of

the limited number of available

options.

With increasing scale, the

menu metaphor falls short.

While the recognition solution

can work in a single application

with a restricted set of options, it

fails when we look at real tasks

that cross application boundar-

ies. For example, the argument

that menus provide visibility and

findability breaks down when

applied at a large scale because

they become slow to learn and

use. Similarly, keyboard short-

cuts—patches meant to increase

the speed of menus—also do not

scale. The keyboard features a

finite number of keys and even

fewer mnemonic matchings of

keys to functionality.

Icons fare worse than menus

and keyboard shortcuts. The

abstract concepts inherent to

detailed functionality are difficult

to represent visually. Microsoft

Word attempts to use icons to

represent some of the basic func-

tionality of text processing, but

this method doesn’t work out

well. Can you figure out what

each of these icons does?

Even if you can recognize a few

of the examples, your recognition

is learned. Those icons, no matter

how self-evident Microsoft would

like them to be, require language

(in the form of tooltips) to actu-

ally explain what they do. If

simple text-formatting operations

fail so greatly, how can icons be

designed to express the full range

of functionality that services

provide? And how would we page

through that giant lexicon of

icons to quickly to find the one

we’re looking for?

The “window, icon, menu,

pointing-device” or WIMP para-

digm, has its limits, and these

limits are now growing clearer as

the complexity of modern com-

puting unfolds.

The Linguistic Command
Line. Pictionary is a game in

system should not be more com-

plex than your present needs,

and by allowing the system to

increase its power incrementally,

the dream of providing products

that are truly simple initially can

be achieved, without their being

made to merely look simple, and

without impairing their flexibil-

ity,” he wrote.

My father also discussed

the conflict between seamless

user tasks and divided applica-

tions: “Instead of a computer’s

software being viewed as an

operating system and a set of

applications, then, the humane

interface views the software

as a set of commands.” That is,

functionality should be learned

on an as-needed basis, and be

available anywhere in the system,

regardless of the dividing lines

between the individual applica-

tions. Applications interfere with

the idea of as-needed functional-

ity. The learning curve for each

application can be overcome with

use, but if we need to use any

additional piece of functionality

not provided in our main appli-

cation, we must learn an entire

other application that provides it.

This makes a simple task such as

editing a document with pictures

unnecessarily difficult.

I’ve tried to follow through on

these ideas in my own work and

to design an interface system

that works beyond the boundar-

ies of an individual application.

The challenge is that the current

software economy is tied to the

concept of applications. Disparate

applications aren’t going to dis-

appear. Providing services, how-

ever, allows us to granulate that

software economy. If you don’t

need all of the functionality of

Photoshop, you can just buy the

photo-editing features you need

in
te

ra
c

ti
o

n
s 

 
J

a
n

u
a

ry
 +

 F
e

b
ru

a
ry

 2
0

0
8

�0

On The Language of Interactions

which one tries to represent

objects, places, and abstract

thoughts in image form. It’s

a hard game, and there is no

reverse game. Because informa-

tion density is drastically greater

in pictures than in prose, a

picture is indeed worth a thou-

sand words, but only when they

describe a concrete visual like a

graph or a portrait. In the realm

of the abstract, pictures fail. How

would you pictorially represent

Marxism? You could try a picture

of Marx, but that doesn’t distin-

guish between the person and the

school of thought (and requires

your viewer to know what Marx

looks like; otherwise it’s just a

guy with a beard). Words can

capture abstractions that pictures

cannot because language has

an immense amount of descrip-

tive and differentiating power.

Abstract thoughts are exactly

represented by the words that

give them names. It is this power

that comes to the rescue in speci-

fying functionality.

Standard GUIs, with their drop-

down menus, check buttons, and

tree-lists, cannot compare to

the range of options that a text

interface effortlessly provides.

With just five alphanumeric char-

acters, we can choose one out of

100,000,000 possible sequences.

And choosing any one sequence

is, in approximation, as fast as

choosing any other (typing five

characters takes roughly one sec-

ond). It’s difficult to come up with

a non-text-based interface that

can perform as well.

Using language to access func-

tionality brings to mind the old-

form command line, which is still

one of the most powerful inter-

face paradigms we have for con-

trolling our computers. Although

command lines are hard to learn

Two current programs attempt to deliver linguistic command-line interface to users:
Humanized’s Enso, and Blacktree’s excellent Quicksilver. Enso uses a more natural-
language syntax, and works like this:

1. At any time, the user presses an activation key to call up a text-entry area.

2. Next, the user begins typing what they want to do. For instance,
“translate to Japanese.”

3. As the user types, Enso autocompletes to the most likely command,
and related suggestions appear below the typed text.

4. The user either continues typing until the command desired is specified,
or arrows to a preferred command.

5. The user dismisses Enso, and the specified command is executed.

Enso then takes the selected text, uses the Google translation service, and places
the results back into the text. With just one implementation, the ability to translate to
and from languages is available anywhere on the computer, always with the same
interface, and accessible in a few mnemonic keystrokes. Enso uses copy and paste
as the graphical equivalent to standard out and standard in, allowing it to speak to
almost any application in an implementation-agnostic manner. Because of the power
of language, adding a large number of commands scales well. It’s always easy to get
to the functionality desired.

Linguistic Command Line Interfaces

in
te

ra
c

ti
o

n
s 

 
J

a
n

u
a

ry
 +

 F
e

b
ru

a
ry

 2
0

0
8

�1

FEATURE

and difficult to troubleshoot

when things go wrong, nothing

is intrinsically hard or difficult

about using language to tell the

computer what to do. The hard

part of the old command lines

was memorizing command names

as unfathomable as the origin of

Stonehenge. Worse, remembering

command-line options is like bob-

bing for apples in a cement mixer.

I still have to ask my coworkers

which flags are needed for untar-

ring a gzipped file. (It’s “tar-xfvz.”

Gee, how could I forget?)

But maybe this confusion isn’t

the fault of command-line inter-

faces in general; maybe it’s just

the command lines we’re used to.

If commands were memorable,

and their syntax forgiving, per-

haps we wouldn’t be so scared

to reconsider these interface

paradigms. Perhaps the linguistic

command line is the future of

computing.

The move back toward using

language for selection started

with Web searching. Google

placed the capstone when its

name became the household

verb for “typing to find what

you want.” In fact, googling is

almost always faster than wad-

ing through a bookmark menu

or a categorical listing, which

again indicates that something

is wrong with using menus as a

mechanism for accessing large

quantities of data. After the Web,

search came back to the desktop.

OSX, Linux, and now Vista have

integrated desktop searches that

make searching the computer as

convenient as searching the Web.

Now, with a few memorable key-

strokes, we can find what we are

looking for. This stands in stark

contrast to racking our brains to

figure out where, in the jumble of

files and folders, we put a docu-

ment. This bears repeating: It

is often easier to use a desktop

search than to find something

placed in the computer for safe-

keeping.

Other places on the Internet

harness the power of language

to good effect. The quick-add

features of 30boxes.com and

Google Calendar are my favorite

examples: They forgo the clunky

and time-consuming forms of

the standard database, and opt

instead for the utter simplicity of

typing an event’s information—

for instance, “Sunday dinner at

7:30 p.m. with Asa Jasa.” The

quick-add feature doesn’t even

feel like an interface, which is the

highest compliment an interface

can get. The better an interface

is, the less it’s noticed.

Even Microsoft Word has a nice

example of a domain-specific,

linguistic command line hiding

in its print dialog. When choos-

ing which pages to print, you can

simply enter the pages you want

as text—e.g., “1-4, 7, 15-20.” This

means to print pages 1 through 4,

page 7, and pages 15 through 20.

Imagine how difficult this type

of input would be to design as a

more standard GUI interface.

Now imagine using a drop-

down menu to select the one

website—out of the 100 mil-

lion websites in existence—to

visit. Ludicrous! How do we

actually surf to a site? By typ-

ing an address into the address

bar, aided by an autocomplete

that quickly enables us to visit

addresses we have previously

visited. When we want to go to

the mail “application,” we type

in “gmail.com”; when we want

to open a news “application,”

we type in “nytimes.com.” On

the old Unix command lines, we

would type “pine” and “rn. “ The

address bar is just a primitive

command line, a command line

that our grandmother can—and

does—use.

Because natural language

processing is still far off on the

horizon, the full linguistic com-

mand line—one that provides

access to all functionality at any

time—must rely on structured

syntax and autocomplete to guide

the user to known commands.

That is, the linguistic command

line needs to help the user get to

the right command, instead of

letting the user blithely type in a

vacuum.

Just as the GUI has grown in

the past two decades, so will

the linguistic command line. We

are seeing it in its infancy. Enso

is one example of a linguistic

command line: It allows users

to issue commands to an operat-

ing-system service regardless

of the application they’re using

(see sidebar). Other approaches

to the problem exist, and find-

ing the best ones will take time.

Regardless of how we finally

tackle the problem, it’s time for

a new, human-centric command

line to make a comeback for lan-

guage-based interfaces—a com-

mand line that finally lets us just

do want we want to do, when we

want to do it, wherever we are.

How humane.

ABOUT ThE AUThOr
Aza gave his first talk on 
user interface at age 10 
with his father at the local 
San Francisco Bay Area 
chapter of SIGCHI and was 

hooked. At 17, he was speaking and con-
sulting internationally; at 19, he co-authored 
a physics textbook because he was too 
young to buy alcohol; at 21, he started 
drinking alcohol and co-founded 
Humanized. Aza enjoys playing the French 
Horn, which has taken him all over the 
world, and puttering in his lab, which has 
given him a greater respect for physics.

Permission to make digital 
or hard copies of all or part 
of this work for personal or 
classroom use is granted 
without the fee, provided 
that copies are not made 
or distributed for profit or 
commercial advantage, 
and that copies bear this 
notice and the full citation 
on the first page. To copy 
otherwise, to republish, 
to post on services or to 
redistribute to lists, requires 
prior specific permission 
and/or a fee. © ACM  
1072-5220/08/0100 $5.00

in
te

ra
c

ti
o

n
s 

 
J

a
n

u
a

ry
 +

 F
e

b
ru

a
ry

 2
0

0
8

��

On The Language of Interactions

